SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hedman Rickard) ;pers:(Wilson Daniel N.)"

Search: WFRF:(Hedman Rickard) > Wilson Daniel N.

  • Result 1-2 of 2
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Hedman, Rickard, 1983- (author)
  • Dynamics of peptide chains during co-translational translocation, membrane integration & domain folding
  • 2015
  • Doctoral thesis (other academic/artistic)abstract
    • The biosynthesis of proteins occurs at the ribosomes, where amino acids are linked together into linear chains. Nascent protein chains may undergo several different processes during their synthesis. Some proteins begin to fold, while others interact with chaperones, targeting factors or processing enzymes. Nascent membrane proteins are targeted to the cell membrane for integration, which involves the translocation of periplasmic domains and the insertion of membrane-embedded parts.The aim of this thesis was to gain insights about the dynamics of nascent peptide chains undergoing folding, membrane translocation and integration. To this end, we explored the use of arrest peptides (APs) as force sensors. APs stall ribosomes when translated unless there is tension in the nascent peptide chain: the higher the tension, the more full-length protein can be detected. By using APs, we could show that a transmembrane helix is strongly ‘pulled’ twice on its way into the membrane and that strong electric forces act on negatively charged peptide segments translocating through the membrane. Furthermore, we discovered that APs could be used to detect protein folding and made the surprising discovery that a small protein domain folded well inside the ribosomal tunnel. Finally, we explored the arrest-stability of a large set of AP variants and found two extremely stable APs.
  •  
2.
  • Su, Ting, et al. (author)
  • The force-sensing peptide VemP employs extreme compaction and secondary structure formation to induce ribosomal stalling
  • 2017
  • In: eLIFE. - 2050-084X. ; 6
  • Journal article (peer-reviewed)abstract
    • Interaction between the nascent polypeptide chain and the ribosomal exit tunnel can modulate the rate of translation and induce translational arrest to regulate expression of downstream genes. The ribosomal tunnel also provides a protected environment for initial protein folding events. Here, we present a 2.9 angstrom cryo-electron microscopy structure of a ribosome stalled during translation of the extremely compacted VemP nascent chain. The nascent chain forms two a-helices connected by an a-turn and a loop, enabling a total of 37 amino acids to be observed within the first 50-55 angstrom of the exit tunnel. The structure reveals how a-helix formation directly within the peptidyltransferase center of the ribosome interferes with aminoacyl-tRNA accommodation, suggesting that during canonical translation, a major role of the exit tunnel is to prevent excessive secondary structure formation that can interfere with the peptidyltransferase activity of the ribosome.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-2 of 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view