SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heinz Andreas) "

Sökning: WFRF:(Heinz Andreas)

Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Dima, Danai, et al. (författare)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3–90 years
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3–90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
3.
  • Frangou, Sophia, et al. (författare)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2021
  • Ingår i: Human Brain Mapping. - : WILEY. - 1065-9471 .- 1097-0193.
  • Tidskriftsartikel (refereegranskat)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
4.
  • Adams, Hieab H. H., et al. (författare)
  • Novel genetic loci underlying human intracranial volume identified through genome-wide association
  • 2016
  • Ingår i: Nature Neuroscience. - 1097-6256 .- 1546-1726. ; 19:12, s. 1569-1582
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals. Four of the loci were also associated with adult human stature, but these remained associated with intracranial volume after adjusting for height. We found a high genetic correlation with child head circumference (rho(genetic) = 0.748), which indicates a similar genetic background and allowed us to identify four additional loci through meta-analysis (N-combined = 37,345). Variants for intracranial volume were also related to childhood and adult cognitive function, and Parkinson's disease, and were enriched near genes involved in growth pathways, including PI3K-AKT signaling. These findings identify the biological underpinnings of intracranial volume and their link to physiological and pathological traits.
  •  
5.
  • de Vera, Jean-Pierre, et al. (författare)
  • Limits of Life and the Habitability of Mars : The ESA Space Experiment BIOMEX on the ISS
  • 2019
  • Ingår i: Astrobiology. - : Mary Ann Liebert. - 1531-1074 .- 1557-8070. ; 19:2, s. 145-157
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • BIOMEX (BIOlogy and Mars EXperiment) is an ESA/Roscosmos space exposure experiment housed within the exposure facility EXPOSE-R2 outside the Zvezda module on the International Space Station (ISS). The design of the multiuser facility supports-among others-the BIOMEX investigations into the stability and level of degradation of space-exposed biosignatures such as pigments, secondary metabolites, and cell surfaces in contact with a terrestrial and Mars analog mineral environment. In parallel, analysis on the viability of the investigated organisms has provided relevant data for evaluation of the habitability of Mars, for the limits of life, and for the likelihood of an interplanetary transfer of life (theory of lithopanspermia). In this project, lichens, archaea, bacteria, cyanobacteria, snow/permafrost algae, meristematic black fungi, and bryophytes from alpine and polar habitats were embedded, grown, and cultured on a mixture of martian and lunar regolith analogs or other terrestrial minerals. The organisms and regolith analogs and terrestrial mineral mixtures were then exposed to space and to simulated Mars-like conditions by way of the EXPOSE-R2 facility. In this special issue, we present the first set of data obtained in reference to our investigation into the habitability of Mars and limits of life. This project was initiated and implemented by the BIOMEX group, an international and interdisciplinary consortium of 30 institutes in 12 countries on 3 continents. Preflight tests for sample selection, results from ground-based simulation experiments, and the space experiments themselves are presented and include a complete overview of the scientific processes required for this space experiment and postflight analysis. The presented BIOMEX concept could be scaled up to future exposure experiments on the Moon and will serve as a pretest in low Earth orbit.
  •  
6.
  • Eckhard, Andreas, et al. (författare)
  • Co-localisation of Kir4.1 and AQP4 in rat and human cochleae reveals a gap in water channel expression at the transduction sites of endocochlear K+ recycling routes
  • 2012
  • Ingår i: Cell and Tissue Research. - 0302-766X .- 1432-0878. ; 350:1, s. 27-43
  • Tidskriftsartikel (refereegranskat)abstract
    • Sensory transduction in the cochlea depends on perilymphatic-endolymphatic potassium (K+) recycling. It has been suggested that the epithelial supporting cells (SCs) of the cochlear duct may form the intracellular K+ recycling pathway. Thus, they must be endowed with molecular mechanisms that facilitate K+ uptake and release, along with concomitant osmotically driven water movements. As yet, no molecules have been described that would allow for volume-equilibrated transepithelial K+ fluxes across the SCs. This study describes the subcellular co-localisation of the Kir4.1 K+ channel (Kir4.1) and the aquaporin-4 water channel (AQP4) in SCs, on the basis of immunohistochemical double-labelling experiments in rat and human cochleae. The results of this study reveal the expression of Kir4.1 in the basal or basolateral membranes of the SCs in the sensory domain of the organ of Corti that are adjacent to hair cells and in the non-sensory domains of the inner and outer sulci that abut large extracellular fluid spaces. The SCs of the inner sulcus (interdental cells, inner sulcus cells) and the outer sulcus (Hensen’s cells, outer sulcus cells) display the co-localisation of Kir4.1 and AQP4 expression. However, the SCs in the sensory domain of the organ of Corti reveal a gap in the expression of AQP4. The outer pillar cell is devoid of both Kir4.1 and AQP4. The subcellular co-localisation of Kir4.1 and AQP4 in the SCs of the cochlea described in this study resembles that of the astroglia of the central nervous system and the glial Mueller cells in the retina.
  •  
7.
  •  
8.
  • Hibar, Derrek P., et al. (författare)
  • Common genetic variants influence human subcortical brain structures
  • 2015
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 520:7546, s. 224-U216
  • Tidskriftsartikel (refereegranskat)abstract
    • The highly complex structure of the human brain is strongly shaped by genetic influences(1). Subcortical brain regions form circuits with cortical areas to coordinate movement(2), learning, memory(3) and motivation(4), and altered circuits can lead to abnormal behaviour and disease(5). To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts. We identify five novel genetic variants influencing the volumes of the putamen and caudate nucleus. We also find stronger evidence for three loci with previously established influences on hippocampal volume(5) and intracranial volume(6). These variants show specific volumetric effects on brain structures rather than global effects across structures. The strongest effects were found for the putamen, where a novel intergenic locus with replicable influence on volume (rs945270; P = 1.08 X 10(-33); 0.52% variance explained) showed evidence of altering the expression of the KTN1 gene in both brain and blood tissue. Variants influencing putamen volume clustered near developmental genes that regulate apoptosis, axon guidance and vesicle transport. Identification of these genetic variants provides insight into the causes of variability in human brain development, and may help to determine mechanisms of neuropsychiatric dysfunction.
  •  
9.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - 2041-1723 .- 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
10.
  • Mohnke, Sebastian, et al. (författare)
  • Further evidence for the impact of a genome-wide-supported psychosis risk variant in ZNF804A on the Theory of Mind network
  • 2014
  • Ingår i: Neuropsychopharmacology. - 0893-133X .- 1740-634X. ; 39:5, s. 1196-1205
  • Tidskriftsartikel (refereegranskat)abstract
    • The single-nucleotide polymorphism (SNP) rs1344706 in ZNF804A is one of the best-supported risk variants for psychosis. We hypothesized that this SNP contributes to the development of schizophrenia by affecting the ability to understand other people's mental states. This skill, commonly referred to as Theory of Mind (ToM), has consistently been found to be impaired in schizophrenia. Using functional magnetic resonance imaging, we previously showed that in healthy individuals rs1344706 impacted on activity and connectivity of key areas of the ToM network, including the dorsomedial prefrontal cortex, temporo-parietal junction, and the posterior cingulate cortex, which show aberrant activity in schizophrenia patients, too. We aimed to replicate these results in an independent sample of 188 healthy German volunteers. In order to assess the reliability of brain activity elicited by the ToM task, 25 participants performed the task twice with an interval of 14 days showing excellent accordance in recruitment of key ToM areas. Confirming our previous results, we observed decreasing activity of the left temporo-parietal junction, dorsomedial prefrontal cortex, and the posterior cingulate cortex with increasing number of risk alleles during ToM. Complementing our replication sample with the discovery sample, analyzed in a previous report (total N=297), further revealed negative genotype effects in the left dorsomedial prefrontal cortex as well as in the temporal and parietal regions. In addition, as shown previously, rs1344706 risk allele dose positively predicted increased frontal-temporo-parietal connectivity. These findings confirm the effects of the psychosis risk variant in ZNF804A on the dysfunction of the ToM network.
  •  
Skapa referenser, mejla, bekava och länka
Typ av publikation
tidskriftsartikel (140)
konferensbidrag (30)
forskningsöversikt (10)
rapport (2)
licentiatavhandling (2)
bokkapitel (1)
visa fler...
annan publikation (1)
visa färre...
Typ av innehåll
refereegranskat (174)
övrigt vetenskapligt (10)
populärvet., debatt m.m. (2)
Författare/redaktör
Heinz, Andreas Marti ... (87)
Casarejos, E. (51)
Benlliure, J (49)
Simon, H (45)
Alvarez-Pol, H. (45)
Kelic-Heil, A. (43)
visa fler...
Cortina-Gil, D. (41)
Rossi, D (35)
Caamaño, M. (34)
Audouin, L. (33)
Paradela, C (31)
Johansson, Håkan T., ... (31)
Heinz, Andreas (30)
Nilsson, Thomas, 196 ... (30)
Savran, D. (28)
Kurz, N (27)
Ramos, D (25)
Taieb, J. (25)
Weick, H. (24)
Nociforo, C. (24)
Aumann, T (23)
Chatillon, A. (23)
Martin, J. F. (22)
Reifarth, R (22)
Belier, G. (22)
Boutoux, G. (22)
Gorbinet, T. (22)
Tengblad, O (21)
Heil, M (21)
Pietri, S. (21)
Boretzky, K. (21)
Galaviz, D. (21)
Caesar, C (20)
Thies, Ronja, 1987 (20)
Farget, F. (20)
Lindberg, Simon, 198 ... (20)
Perea, A. (19)
Scheit, H. (19)
Jonson, Björn, 1941 (18)
Elekes, Z. (18)
Holl, M. (18)
Plag, R (17)
Henriques, A. (17)
Kalantar-Nayestanaki ... (17)
Paschalis, S. (17)
Heftrich, T. (17)
Heine, M. (17)
Wamers, F. (17)
Zilges, A. (17)
Jurado, B. (17)
visa färre...
Lärosäte
Chalmers tekniska högskola (91)
Uppsala universitet (39)
Lunds universitet (33)
Umeå universitet (15)
Karolinska Institutet (11)
Linköpings universitet (10)
visa fler...
Göteborgs universitet (8)
Stockholms universitet (8)
Jönköping University (4)
Linnéuniversitetet (3)
Högskolan Dalarna (3)
Högskolan Kristianstad (2)
Högskolan i Halmstad (2)
Kungliga Tekniska Högskolan (1)
Mittuniversitetet (1)
RISE (1)
visa färre...
Språk
Engelska (186)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (80)
Medicin och hälsovetenskap (42)
Teknik (16)
Samhällsvetenskap (8)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy