SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hellesen C) ;mspu:(conferencepaper)"

Sökning: WFRF:(Hellesen C) > Konferensbidrag

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Jammes, C., et al. (författare)
  • Progress in the development of the neutron flux monitoring system of the French GEN-IV SFR: Simulations and experimental validations
  • 2015
  • Ingår i: 2015 4th International Conference on Advancements in Nuclear Instrumentation Measurement Methods and their Applications, ANIMMA 2015. - 9781479999187
  • Konferensbidrag (refereegranskat)abstract
    • The neutron flux monitoring system of the French GEN-IV sodium-cooled fast reactor will rely on high-temperature fission chambers installed in the reactor vessel and capable of operating over a wide-range neutron flux. The definition of such a system is presented and the technological solutions are justified with the use of simulation and experimental results. © 2015 IEEE.
  •  
3.
  •  
4.
  •  
5.
  • Jammes, C., et al. (författare)
  • Progress in the development of the neutron flux monitoring system of the French GF:N-IV SFR : simulations and experimental validations.
  • 2015
  • Ingår i: 2015 4Th International Conference On Advancements In Nuclear Instrumentation Measurement Methods And Their Applications (Animma). - : IEEE. - 9781479999187
  • Konferensbidrag (refereegranskat)abstract
    • France has a long experience of about 50 years in designing, building and operating sodium-cooled fast reactors (SFR) such as RAPSODIE, PHENIX and SUPER PHENIX. Fast reactors feature the double capability of reducing nuclear waste and saving nuclear energy resources by burning actinides. Since this reactor type is one of those selected by the Generation IV International Forum, the French government asked, in the year 2006, CEA, namely the French Alternative Energies and Atomic Energy Commission, to lead the development of an innovative GEN-IV nuclear- fission power demonstrator. The major objective is to improve the safety and availability of an SFR. The neutron flux monitoring (NFM) system of any reactor must, in any situation, permit both reactivity control and power level monitoring from startup to full power. It also has to monitor possible changes in neutron flux distribution within the core region in order to prevent any local melting accident. The neutron detectors will have to be installed inside the reactor vessel because locations outside the vessel will suffer from severe disadvantages; radially the neutron shield that is also contained in the reactor vessel will cause unacceptable losses in neutron flux; below the core the presence of a core-catcher prevents from inserting neutron guides; and above the core the distance is too large to obtain decent neutron signals outside the vessel. Another important point is to limit the number of detectors placed in the vessel in order to alleviate their installation into the vessel. In this paper, we show that the architecture of the NFM system will rely on high-temperature fission chambers (HTFC) featuring wide-range flux monitoring capability. The definition of such a system is presented and the justifications of technological options are brought with the use of simulation and experimental results. Firstly, neutron-transport calculations allow us to propose two in-vessel regions, namely the above-core and under-core structures. We verify that they comply with the main objective, that is the neutron power and flux distribution monitoring. HTFC placed in these two regions can detect an inadvertent control rod withdrawal that is a postulated initiating event for safety demonstration. Secondly, we show that the HTFC reliability is enhanced thanks to a more robust physical design and the fact that it has been justified that the mineral insulation is insensitive to any increase in temperature. Indeed, the HTFC insulation is subject to partial discharges at high temperature when the electric field between their electrodes is greater than about 200 V/mm or so. These discharges give rise to signals similar to the neutron pulses generated by a fission chamber itself, which may bias the HTFC count rate at start-up only. However, as displayed in Figure 1, we have experimentally verified that one can discriminate neutron pulses from partial discharges using online estimation of pulse width. Thirdly, we propose to estimate the count rate of a HTFC using the third order cumulant of its signal that is described by a filtered Poisson process. For such a statistic process, it is known that any cumulant, also called cumulative moment, is proportional to the process intensity that is here the count rate of a fission chamber. One recalls that the so-called Campbelling mode of such a detector is actually based on the signal variance, which is the second-order cumulant as well. The use of this extended Campbelling mode based on the third-order cumulant will permit to ensure the HTFC response linearity over the entire neutron flux range using a signal processing technique that is simple enough to satisfy design constraints on electric devices important for nuclear safety. We also show that this technique, named high order Campbelling method (HOC), is significantly more robust than another technique based on the change in the HTFC filling gas, which consists in adding a few percent of nitrogen. Finally, we also present an experimental campaign devoted to the required calibration process of the so-called HOC method. The Campbelling results show a good agreement with the simple pulse counting estimation at low count rates. It is also shown that the HOC technique provides a linear estimation of the count rates at higher power levels as well.
  •  
6.
  •  
7.
  • Ongena, J., et al. (författare)
  • Synergetic heating of D-NBI ions in the vicinity of the mode conversion layer in H-D plasmas in JET with the ITER like wall.
  • 2017
  • Ingår i: EPJ Web of Conferences. - : EDP Sciences. - 2100-014X.
  • Konferensbidrag (refereegranskat)abstract
    • This paper discusses the extension of the 'three-ion' species ICRF technique for heating mixture plasmas using fast injected NBI ions as resonant 'third' species. In this scenario the ICRF power is absorbed by the fast beam ions in the vicinity of the mode conversion layer where the left-hand polarized RF electric field E+ is strongly enhanced. The ions in the beam velocity distribution that have a Doppler-shifted resonance close to the mode conversion layer efficiently absorb RF power and undergo acceleration. We show first experimental observations of ICRF heating of D-NBI ions in H-D plasmas in JET with the ITER-like wall. In agreement with theoretical predictions and numerical modelling, acceleration of the D-NBI ions in this D-(DNBI)-H scenario is confirmed by several fast-ion measurements. An extension of the heating scheme discussed here is acceleration of T-NBI and D-NBI ions in D-T plasmas, offering the potential to further boost the Q-value in future D-T campaigns in JET.
  •  
8.
  • Van Eester, D., et al. (författare)
  • Enhancing the mode conversion efficiency in JET plasmas with multiple mode conversion layers
  • 2011
  • Ingår i: AIP Conf. Proc.. - : AIP. - 1551-7616 .- 0094-243X. - 9780735409781 ; , s. 301-308
  • Konferensbidrag (refereegranskat)abstract
    • The constructive interference effect described by Fuchs et al. [1] shows that the mode conversion and thereby the overall heating efficiency can be enhanced significantly when an integer number of fast wave wavelengths can be folded in between the high field side fast wave cutoff and the ion-ion hybrid layer(s) at which the ion Bernstein or ion cyclotron waves are excited. This effect was already experimentally identified in ( 3He)-D plasmas [2] and was recently tested in ( 3He)-H JET plasmas. The latter is an 'inverted' scenario, which differs significantly from the ( 3He)-D scenarios since the mode-conversion layer is positioned between the low field side edge of the plasma and the ion-cyclotron layer of the minority 3He ions (whereas the order in which a wave entering the plasma from the low field side encounters these layers is inverted in a 'regular' scenario), and because much lower 3He concentrations are needed to achieve the mode-conversion heating regime. The presence of small amounts of 4He and D in the discharges gave rise to an additional mode conversion layer on top of the expected one associated with 3He-H, which made the interpretation of the results more complex but also more interesting: Three different regimes could be distinguished as a function of X[ 3He], and the differing dynamics at the various concentrations could be traced back to the presence of these two mode conversion layers and their associated fast wave cutoffs. Whereas (1-D and 2-D) numerical modeling yields quantitative information on the RF absorptivity, recent analytical work by Kazakov [3] permits to grasp the dominant underlying wave interaction physics.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy