SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hellstrand M) ;pers:(Swärd Karl)"

Sökning: WFRF:(Hellstrand M) > Swärd Karl

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Swärd, Karl, et al. (författare)
  • Inhibition of Rho-associated kinase blocks agonist-induced Ca2+ sensitization of myosin phosphorylation and force in guinea-pig ileum
  • 2000
  • Ingår i: Journal of Physiology. - 1469-7793. ; 522, s. 33-49
  • Tidskriftsartikel (refereegranskat)abstract
    • Ca2+ sensitization of smooth muscle contraction involves the small GTPase RhoA, inhibition of myosin light chain phosphatase (MLCP) and enhanced myosin regulatory light chain (LC20) phosphorylation. A potential effector of RhoA is Rho-associated kinase (ROK). The role of ROK in Ca2+ sensitization was investigated in guinea-pig ileum. Contraction of permeabilized muscle strips induced by GTPgammaS at pCa 6.5 was inhibited by the kinase inhibitors Y-27632, HA1077 and H-7 with IC50 values that correlated with the known Ki values for inhibition of ROK. GTPgammaS also increased LC20 phosphorylation and this was prevented by HA1077. Contraction and LC20 phosphorylation elicited at pCa 5.75 were, however, unaffected by HA1077. Pre-treatment of intact tissue strips with HA1077 abolished the tonic component of carbachol-induced contraction and the sustained elevation of LC20 phosphorylation, but had no effect on the transient or sustained increase in [Ca2+]i induced by carbachol. LC20 phosphorylation and contraction dynamics suggest that the ROK-mediated increase in LC20 phosphorylation is due to MLCP inhibition, not myosin light chain kinase activation. In the absence of Ca2+, GTPgammaS stimulated 35S incorporation from [35S]ATPgammaS into the myosin targeting subunit of MLCP (MYPT). The enhanced thiophosphorylation was inhibited by HA1077. No thiophosphorylation of LC20 was detected. These results indicate that ROK mediates agonist-induced increases in myosin phosphorylation and force by inhibiting MLCP activity through phosphorylation of MYPT. Under Ca2+-free conditions, ROK does not appear to phosphorylate LC20 in situ, in contrast to its ability to phosphorylate myosin in vitro. In particular, ROK activation is essential for the tonic phase of agonist-induced contraction.
  •  
2.
  • Lydrup, M L, et al. (författare)
  • Effect of glibenclamide on membrane response to metabolic inhibition in smooth muscle of rat portal vein
  • 1994
  • Ingår i: Journal of Vascular Research. - 1423-0135. ; 31:2, s. 82-91
  • Tidskriftsartikel (refereegranskat)abstract
    • Vascular smooth muscle tone is dependent on oxidative metabolism, a phenomenon of potential importance for the metabolic regulation of blood flow to tissues. The response of the rat portal vein to inhibition of cell respiration by cyanide (0.1-1 mM) is a reduction of its spontaneous myogenic activity. The trains of action potentials triggering phasic contractions are reduced in duration, while the frequency of trains is often somewhat increased as the resting membrane potential in the intervals between spike trains is less negative by 6.5 mV. Glibenclamide (10(-7) M) did not affect the resting membrane potential or spontaneous mechanical activity of oxygenated portal veins, but partly restored the depressed myogenic activity in the presence of cyanide (0.5 mM). The spike trains were longer, while the membrane was depolarized by 3 mV compared with the effects of cyanide alone. Inhibition of both oxidative and glycolytic metabolism by 2 mM NaCN in a medium where glucose was replaced by beta-hydroxybutyrate caused a hyperpolarization which was abolished by 10(-7) M glibenclamide. The relaxing effect of the K+ channel opener cromakalim (5 x 10(-9) to 6.25 x 10(-7) M) was partly antagonized by glibenclamide. Basal cytosolic [Ca2+] was increased by cyanide, while the Ca2+ transients associated with phasic contractions were reduced in duration. This latter effect was partially reversed by glibenclamide. The effect of cyanide on high-K+ contractures, which are associated with sustained membrane depolarization and not dependent on repetitive spike activity, was not influenced by 10(-7) M glibenclamide. The effects of inhibited cell respiration on spontaneous electrical activity seem to reflect a depolarizing drive caused by inhibited active ion exchange mechanisms, modified by a repolarizing drive, possibly from ATP-regulated K+ channels, causing reduced duration of the spike trains. While glibenclamide affects spontaneous activity at all levels of oxidative blockade, glibenclamide-sensitive hyperpolarization is seen only when both oxidative and glycolytic metabolism is inhibited.
  •  
3.
  • Swärd, Karl, et al. (författare)
  • Effects of metabolic inhibition on cytoplasmic calcium and contraction in smooth muscle of rat portal vein
  • 1993
  • Ingår i: Acta Physiologica Scandinavica. - 0001-6772. ; 148:3, s. 265-272
  • Tidskriftsartikel (refereegranskat)abstract
    • Contractions in the rat portal vein, evoked by spontaneous action potentials or depolarizing high-K+ solution, are rapidly and reversibly inhibited by hypoxia or respiratory blockade. Intracellular free calcium ([Ca2+]i) was measured using Fura-2 to evaluate the effects of metabolic blockade on excitation-contraction coupling. Spontaneous contractions were associated with transient increases in [Ca2+]i. During exposure to cyanide (0.2-0.4 mM) or 2,4-dinitrophenol (30 microM) the duration and amplitude of the Ca2+ transients were decreased, leading to a decreased mean time integral of the individual [Ca2+]i transient, and corresponding decrease in the duration and amplitude of the contraction. Basal [Ca2+]i was increased in the presence of the metabolic inhibitors. High-K+ (40 mM) contractions caused a sustained increase in [Ca2+]i, which was not inhibited by exposure to cyanide, although the amplitude of the associated contraction was greatly reduced. Together with the earlier demonstration of decreased 20 kD myosin light chain phosphorylation under these conditions, this indicates that the activation of contraction is influenced by metabolism via the energy dependence of the light chain phosphorylation reaction. Thus at least three steps in the excitation-contraction sequence are influenced by inhibition of oxidative metabolism: membrane excitation, light chain phosphorylation, and the cross-bridge cycle. This provides mechanisms for a high degree of metabolic sensitivity of vascular tone, of importance for the adaptation of blood flow to tissue metabolic demands.
  •  
4.
  • Swärd, Karl, et al. (författare)
  • Polyamines inhibit myosin phosphatase and increase LC20 phosphorylation and force in smooth muscle
  • 1995
  • Ingår i: American Journal of Physiology: Cell Physiology. - 1522-1563. ; 269:3, s. 563-571
  • Tidskriftsartikel (refereegranskat)abstract
    • The increase in Ca(2+)-activated force caused by polyamines in beta-escin-permeabilized guinda pig ileum is shown to be associated with increased myosin 20-kDa light chain (LC20) phosphorylation and shortening velocity. Myosin LC20 dephosphorylation with arrested kinase activity was slower in the presence of 1 mM spermine. Smooth muscle phosphatases (SMP-I, -II, -III, and -IV) isolated from turkey gizzard are all active against phosphorylated LC20, but only SMP-III and -IV dephosphorylate heavy meromyosin (HMM). Spermine inhibited SMP-III activity toward LC20 but stimulated HMM dephosphorylation, whereas SMP-IV was inhibited with both substrates. In contrast, SMP-I and -II were stimulated by spermine. The relative effects of different polyamines correlated with an increasing number of positive charges. Spermine did not affect binding of SMP-IV to myosin and did not dissociate any of the subunits of the enzyme. Incubation of permeabilized strips with SMP-IV resulted in attenuated responses to Ca2+, an effect that was opposed by spermine and abolished by microcystin-LR. We conclude that spermine selectively inhibits myosin phosphatase activity and suggest that polyamines function as endogenous myosin phosphatase inhibitors.
  •  
5.
  • Turczynska, Karolina, et al. (författare)
  • Regulation of Smooth Muscle Dystrophin and Synaptopodin 2 Expression by Actin Polymerization and Vascular Injury.
  • 2015
  • Ingår i: Arteriosclerosis, Thrombosis and Vascular Biology. - 1524-4636. ; 35:6, s. 1489-1497
  • Tidskriftsartikel (refereegranskat)abstract
    • Actin dynamics in vascular smooth muscle is known to regulate contractile differentiation and may play a role in the pathogenesis of vascular disease. However, the list of genes regulated by actin polymerization in smooth muscle remains incomprehensive. Thus, the objective of this study was to identify actin-regulated genes in smooth muscle and to demonstrate the role of these genes in the regulation of vascular smooth muscle phenotype.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy