SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henderson Brian E) ;lar1:(lu)"

Sökning: WFRF:(Henderson Brian E) > Lunds universitet

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Couch, Fergus J., et al. (författare)
  • Identification of four novel susceptibility loci for oestrogen receptor negative breast cancer
  • 2016
  • Ingår i: Nature Communications. - : NATURE PUBLISHING GROUP. - 2041-1723. ; 7:11375, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 x 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for similar to 11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
  •  
2.
  • Hollestelle, Antoinette, et al. (författare)
  • No clinical utility of KRAS variant rs61764370 for ovarian or breast cancer
  • 2016
  • Ingår i: Gynecologic Oncology. - : Elsevier BV. - 0090-8258 .- 1095-6859. ; 141:2, s. 386-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Clinical genetic testing is commercially available for rs61764370, an inherited variant residing in a KRAS 3′ UTR microRNA binding site, based on suggested associations with increased ovarian and breast cancer risk as well as with survival time. However, prior studies, emphasizing particular subgroups, were relatively small. Therefore, we comprehensively evaluated ovarian and breast cancer risks as well as clinical outcome associated with rs61764370. Methods Centralized genotyping and analysis were performed for 140,012 women enrolled in the Ovarian Cancer Association Consortium (15,357 ovarian cancer patients; 30,816 controls), the Breast Cancer Association Consortium (33,530 breast cancer patients; 37,640 controls), and the Consortium of Modifiers of BRCA1 and BRCA2 (14,765 BRCA1 and 7904 BRCA2 mutation carriers). Results We found no association with risk of ovarian cancer (OR = 0.99, 95% CI 0.94-1.04, p = 0.74) or breast cancer (OR = 0.98, 95% CI 0.94-1.01, p = 0.19) and results were consistent among mutation carriers (BRCA1, ovarian cancer HR = 1.09, 95% CI 0.97-1.23, p = 0.14, breast cancer HR = 1.04, 95% CI 0.97-1.12, p = 0.27; BRCA2, ovarian cancer HR = 0.89, 95% CI 0.71-1.13, p = 0.34, breast cancer HR = 1.06, 95% CI 0.94-1.19, p = 0.35). Null results were also obtained for associations with overall survival following ovarian cancer (HR = 0.94, 95% CI 0.83-1.07, p = 0.38), breast cancer (HR = 0.96, 95% CI 0.87-1.06, p = 0.38), and all other previously-reported associations. Conclusions rs61764370 is not associated with risk of ovarian or breast cancer nor with clinical outcome for patients with these cancers. Therefore, genotyping this variant has no clinical utility related to the prediction or management of these cancers.
  •  
3.
  • Mavaddat, Nasim, et al. (författare)
  • Prediction of Breast Cancer Risk Based on Profiling With Common Genetic Variants
  • 2015
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press (OUP). - 1460-2105 .- 0027-8874. ; 107:5, s. 036-036
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Data for multiple common susceptibility alleles for breast cancer may be combined to identify women at different levels of breast cancer risk. Such stratification could guide preventive and screening strategies. However, empirical evidence for genetic risk stratification is lacking. Methods: We investigated the value of using 77 breast cancer-associated single nucleotide polymorphisms (SNPs) for risk stratification, in a study of 33 673 breast cancer cases and 33 381 control women of European origin. We tested all possible pair-wise multiplicative interactions and constructed a 77-SNP polygenic risk score (PRS) for breast cancer overall and by estrogen receptor (ER) status. Absolute risks of breast cancer by PRS were derived from relative risk estimates and UK incidence and mortality rates. Results: There was no strong evidence for departure from a multiplicative model for any SNP pair. Women in the highest 1% of the PRS had a three-fold increased risk of developing breast cancer compared with women in the middle quintile (odds ratio [OR] = 3.36, 95% confidence interval [CI] = 2.95 to 3.83). The ORs for ER-positive and ER-negative disease were 3.73 (95% CI = 3.24 to 4.30) and 2.80 (95% CI = 2.26 to 3.46), respectively. Lifetime risk of breast cancer for women in the lowest and highest quintiles of the PRS were 5.2% and 16.6% for a woman without family history, and 8.6% and 24.4% for a woman with a first-degree family history of breast cancer. Conclusions: The PRS stratifies breast cancer risk in women both with and without a family history of breast cancer. The observed level of risk discrimination could inform targeted screening and prevention strategies. Further discrimination may be achievable through combining the PRS with lifestyle/environmental factors, although these were not considered in this report.
  •  
4.
  • Cox, David G., et al. (författare)
  • A comprehensive analysis of the androgen receptor gene and risk of breast cancer: results from the National Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2006
  • Ingår i: Breast Cancer Research. - : Springer Science and Business Media LLC. - 1465-5411 .- 1465-542X. ; 8:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction Androgens have been hypothesised to influence risk of breast cancer through several possible mechanisms, including their conversion to estradiol or their binding to the oestrogen receptor and/ or androgen receptor ( AR) in the breast. Here, we report on the results of a large and comprehensive study of the association between genetic variation in the AR gene and risk of breast cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium ( BPC3). Methods The underlying genetic variation was determined by first sequencing the coding regions of the AR gene in a panel of 95 advanced breast cancer cases. Second, a dense set of markers from the public database was genotyped in a panel of 349 healthy women. The linkage disequilibrium relationships ( blocks) across the gene were then identified, and haplotypetagging single nucleotide polymorphisms ( htSNPs) were selected to capture the common genetic variation across the locus. The htSNPs were then genotyped in the nested breast cancer cases and controls from the Cancer Prevention Study II, European Prospective Investigation into Cancer and Nutrition, Multiethnic Cohort, Nurses' Health Study, and Women's Health Study cohorts ( 5,603 breast cancer cases and 7,480 controls). Results We found no association between any genetic variation ( SNP, haplotype, or the exon 1 CAG repeat) in the AR gene and risk of breast cancer, nor were any statistical interactions with known breast cancer risk factors observed. Conclusion Among postmenopausal Caucasian women, common variants of the AR gene are not associated with risk of breast cancer.
  •  
5.
  • Haiman, Christopher A., et al. (författare)
  • A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer
  • 2011
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 43:12, s. 61-1210
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen receptor (ER)-negative breast cancer shows a higher incidence in women of African ancestry compared to women of European ancestry. In search of common risk alleles for ER-negative breast cancer, we combined genome-wide association study (GWAS) data from women of African ancestry (1,004 ER-negative cases and 2,745 controls) and European ancestry (1,718 ER-negative cases and 3,670 controls), with replication testing conducted in an additional 2,292 ER-negative cases and 16,901 controls of European ancestry. We identified a common risk variant for ER-negative breast cancer at the TERT-CLPTM1L locus on chromosome 5p15 (rs10069690: per-allele odds ratio (OR) = 1.18 per allele, P = 1.0 x 10(-10)). The variant was also significantly associated with triple-negative (ER-negative, progesterone receptor (PR)-negative and human epidermal growth factor-2 (HER2)-negative) breast cancer (OR = 1.25, P = 1.1 x 10(-9)), particularly in younger women (<50 years of age) (OR = 1.48, P = 1.9 x 10(-9)). Our results identify a genetic locus associated with estrogen receptor negative breast cancer subtypes in multiple populations.
  •  
6.
  • Schumacher, Fredrick R., et al. (författare)
  • A comprehensive analysis of common IGF1, IGFBP1 and IGFBP3 genetic variation with prospective IGF-I and IGFBP-3 blood levels and prostate cancer risk among
  • 2010
  • Ingår i: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 19:15, s. 3089-3101
  • Tidskriftsartikel (refereegranskat)abstract
    • The insulin-like growth factor (IGF) pathway has been implicated in prostate development and carcinogenesis. We conducted a comprehensive analysis, utilizing a resequencing and tagging single-nucleotide polymorphism (SNP) approach, between common genetic variation in the IGF1, IGF binding protein (BP) 1, and IGFBP3 genes with IGF-I and IGFBP-3 blood levels, and prostate cancer (PCa) risk, among Caucasians in the NCI Breast and Prostate Cancer Cohort Consortium. We genotyped 14 IGF1 SNPs and 16 IGFBP1/IGFBP3 SNPs to capture common [minor allele frequency (MAF) >= 5%] variation among Caucasians. For each SNP, we assessed the geometric mean difference in IGF blood levels (N = 5684) across genotypes and the association with PCa risk (6012 PCa cases/6641 controls). We present two-sided statistical tests and correct for multiple comparisons. A non-synonymous IGFBP3 SNP in exon 1, rs2854746 (Gly32Ala), was associated with IGFBP-3 blood levels (P-adj = 8.8 x 10(-43)) after adjusting for the previously established IGFBP3 promoter polymorphism A-202C (rs2854744); IGFBP-3 blood levels were 6.3% higher for each minor allele. For IGF1 SNP rs4764695, the risk estimates among heterozygotes was 1.01 (99% CI: 0.90-1.14) and 1.20 (99% CI: 1.06-1.37) for variant homozygotes with overall PCa risk. The corrected allelic P-value was 8.7 x 10(-3). IGF-I levels were significantly associated with PCa risk (P-trend = 0.02) with a 21% increase of PCa risk when compared with the highest quartile to the lowest quartile. We have identified SNPs significantly associated with IGFBP-3 blood levels, but none of these alter PCa risk; however, a novel IGF1 SNP, not associated with IGF-I blood levels, shows preliminary evidence for association with PCa risk among Caucasians.
  •  
7.
  • Cox, David G, et al. (författare)
  • Haplotypes of the estrogen receptor beta gene and breast cancer risk
  • 2008
  • Ingår i: International Journal of Cancer. - : Wiley. - 0020-7136. ; 122:2, s. 387-392
  • Tidskriftsartikel (refereegranskat)abstract
    • Exposure to exogenous (oral contraceptives, postmenopausal hormone therapy) and endogenous (number of ovulatory cycles, adiposity) steroid hormones is associated with breast cancer risk. Breast cancer risk associated with these exposures could hypothetically be modified by genes in the steroid hormone synthesis, metabolism and signaling pathways. Estrogen receptors are the first step along the path of signaling cell growth and development upon stimulation with estrogens. The National Cancer Institute Breast and Prostate Cancer Cohort Consortium has systematically selected haplotype tagging SNPs in genes along the steroid hormone synthesis, metabolism and binding pathways, including the estrogen receptor beta (ESR2) gene. Four htSNPs tag the 6 major (>5% frequency) haplotypes of the ESR2 gene. These polymorphisms have been genotyped in 5,789 breast cancer cases and 7,761 controls nested within the American Cancer Society Cancer Prevention Study II, European Prospective Investigation into Cancer and Nutrition, Multiethnic Cohort, Nurses' Health Study and Women's Health Study cohorts. None of the SNPs were independently associated with breast cancer risk. One haplotype of the ESR2 gene was associated with breast cancer risk before correction for multiple testing (OR 1.17, 95% CI 1.07-1.28, p = 0.0007). This haplotype remained associated with breast cancer risk after adjustment for multiple testing using a permutation procedure. There was no statistically significant heterogeneity in SNP or haplotype odds ratios across cohorts. These data suggest that inherited variants in ESR2 (while possibly conferring a small increased risk of breast cancer) are not associated with appreciable (OR > 1.2) changes in breast cancer risk among Caucasian women.
  •  
8.
  • Setiawan, Veronica Wendy, et al. (författare)
  • CYP17 genetic variation and risk of breast and prostate cancer from the national Cancer Institute Breast and Prostate Cancer Cohort Consortium (BPC3)
  • 2007
  • Ingår i: Cancer Epidemiology Biomarkers & Prevention. - 1538-7755. ; 16:11, s. 2237-2246
  • Tidskriftsartikel (refereegranskat)abstract
    • CYP17 encodes cytochrome p450c17 alpha, which mediates activities essential for the production of sex steroids. Common germ line variation in the CYP17 gene has been related to inconsistent results in breast and prostate cancer, with most studies focusing on the nonsynonymous single nucleotide polymorphism (SNP) T27C (rs743572). We comprehensively characterized variation in CYP17 by direct sequencing of exons followed by dense genotyping across the 58 kb region around CYP17 in five racial/ethnic populations. Two blocks of strong linkage disequilibrium were identified and nine haplotype-tagging SNPs, including T27C, were chosen to predict common haplotypes (R-h(2) >= 0.85). These haplotype-tagging SNPs were genotyped in 8,138 prostate cancer cases and 9,033 controls, and 5,333 breast cancer cases and 7,069 controls from the Breast and Prostate Cancer Cohort Consortium. We observed borderline significant associations with prostate cancer for rs2486758 [TC versus TT, odds ratios (OR), 1.07; 95% confidence intervals (95% Cl), 1.00-1.14; CC versus TT, OR, 1.09; 95% CI, 0.95-1.26; P trend = 0.04] and rs6892 (AG versus AA, OR, 1.08; 95% CI, 1.00-1.15; GG versus AA, OR, 1.11; 95% CI, 0.95-1.30; P trend = 0.03). We also observed marginally significant associations with breast cancer for rs4919687 (GA versus GG, OR, 1.04; 95% CI, 0.97-1.12, AA versus GG, OR, 1.17; 95% CI, 1.03-1.34; P trend = 0.03) and rs4919682 (CT versus CC, OR, 1.04; 95% CI, 0.97-1.12; TT versus CC, OR, 1.16; 95% CI, 1.01-1.33; P trend = 0.04). Common variation at CYP17 was not associated with circulating sex steroid hormones in men or postmenopausal women. Our findings do not support the hypothesis that common germ line variation in CYP17 makes a substantial contribution to postmenopausal breast or prostate cancer susceptibility.
  •  
9.
  • Travis, Ruth C., et al. (författare)
  • CYP19A1 Genetic Variation in Relation to Prostate Cancer Risk and Circulating Sex Hormone Concentrations in Men from the Breast and Prostate Cancer Cohort Consortium
  • 2009
  • Ingår i: Cancer Epidemiology Biomarkers & Prevention. - 1538-7755. ; 18:10, s. 2734-2744
  • Tidskriftsartikel (refereegranskat)abstract
    • Sex hormones, particularly the androgens, are important for the growth of the prostate gland and have been implicated in prostate cancer carcinogenesis, yet the determinants of endogenous steroid hormone levels remain poorly understood. Twin studies suggest a heritable component for circulating concentrations of sex hormones, although epidemiologic evidence linking steroid hormone gene variants to prostate cancer is limited. Here we report on findings from a comprehensive study of genetic variation at the CYP19A1 locus in relation to prostate cancer risk and to circulating steroid hormone concentrations in men by the Breast and Prostate Cancer Cohort Consortium (BPC3), a large collaborative prospective study. The BPC3 systematically characterized variation in CYP19A1 by targeted resequencing and dense genotyping; selected haplotype-tagging single nuclecitide polymorphisms (htSNP) that efficiently predict common variants in U.S. and Europe-an whites, Latinos, Japanese Americans, and Native Hawaiians; and genotyped these htSNPs; in 8,166 prostate cancer cases and 9,079 study-, age-, and ethnicity-matched controls. CYP19A1 htSNPs, two common missense variants and common haplotypes were not significantly associated with risk of prostate cancer. However, several htSNPs in linkage disequilibrium blocks 3 and 4 were significantly associated with a 5% to 10% difference in estradiol concentrations in men [association per copy of the two-SNP haplotype rs749292-rs727479 (A-A) versus noncarriers; P = 1 x 10(-5)], and with inverse, although less marked changes, in free testosterone concentrations. These results suggest that although germline variation in CYP19A1 characterized by the htSNPs produces measurable differences in sex hormone concentrations in men, they do not substantially influence risk of prostate cancer. (Cancer Epidemiol Biomarkers Prev 2009;18(10):2734-44)
  •  
10.
  • Zaitlen, Noah, et al. (författare)
  • Analysis of case-control association studies with known risk variants
  • 2012
  • Ingår i: Bioinformatics. - : Oxford University Press (OUP). - 1367-4803 .- 1367-4811. ; 28:13, s. 1729-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • Motivation: The question of how to best use information from known associated variants when conducting disease association studies has yet to be answered. Some studies compute a marginal P-value for each Several Nucleotide Polymorphisms independently, ignoring previously discovered variants. Other studies include known variants as covariates in logistic regression, but a weakness of this standard conditioning strategy is that it does not account for disease prevalence and non-random ascertainment, which can induce a correlation structure between candidate variants and known associated variants even if the variants lie on different chromosomes. Here, we propose a new conditioning approach, which is based in part on the classical technique of liability threshold modeling. Roughly, this method estimates model parameters for each known variant while accounting for the published disease prevalence from the epidemiological literature. Results: We show via simulation and application to empirical datasets that our approach outperforms both the no conditioning strategy and the standard conditioning strategy, with a properly controlled false-positive rate. Furthermore, in multiple data sets involving diseases of low prevalence, standard conditioning produces a severe drop in test statistics whereas our approach generally performs as well or better than no conditioning. Our approach may substantially improve disease gene discovery for diseases with many known risk variants.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy