SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henriksson Richard) ;lar1:(ri)"

Sökning: WFRF:(Henriksson Richard) > RISE

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gephart, Jessica, et al. (författare)
  • Environmental performance of blue foods
  • 2021
  • Ingår i: Nature. - : Nature Research. - 0028-0836 .- 1476-4687. ; 597:7876, s. 360-365
  • Tidskriftsartikel (refereegranskat)abstract
    • Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets. © 2021, The Author(s)
  •  
2.
  • Tlusty, Micheal, et al. (författare)
  • Commentary : Comparing efficiency in aquatic and terrestrial animal production systems
  • 2018
  • Ingår i: Environmental Research Letters. - : Institute of Physics Publishing. - 1748-9326. ; 13:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Aquaculture is receiving increased attention from a variety of stakeholders. This is largely due to its current role in the global food system of supplying more than half of the seafood consumed, and also because the industry continues to steadily expand (UN Food and Agriculture Organization 2018). A recent article in Environmental Research Letters, 'Feed conversion efficiency in aquaculture: Do we measure it correctly?', by Fry et al (2018a) found that measuring feed conversion efficiency of selected aquatic and terrestrial farmed animals using protein and calorie retention resulted in species comparisons (least to most efficient) and overlap among species dissimilar from comparisons based on widely used weight-based feed conversion ratio (FCR) values. The study prompted spirited discussions among researchers, industry representatives, and others. A group assembled to write a standard rebuttal, but during this process, decided it was best to engage the study's original authors to join the discourse. Through this collaboration, we provide the resultant additional context relevant to the study in order to advance conversations and research on the use of efficiency measures in aquatic and terrestrial animal production systems.
  •  
3.
  • Tlusty, Michael, et al. (författare)
  • Reframing the sustainable seafood narrative
  • 2019
  • Ingår i: Global Environmental Change. - : Elsevier Ltd. - 0959-3780 .- 1872-9495. ; 59
  • Tidskriftsartikel (refereegranskat)abstract
    • The dominant sustainable seafood narrative is one where developed world markets catalyze practice improvements by fisheries and aquaculture producers that enhance ocean health. The narrow framing of seafood sustainability in terms of aquaculture or fisheries management and ocean health has contributed to the omission of these important food production systems from the discussion on global food system sustainability. This omission is problematic. Seafood makes critical contributions to food and nutrition security, particularly in low income countries, and is often a more sustainable and nutrient rich source of animal sourced-food than terrestrial meat production. We argue that to maximize the positive contributions that seafood can make to sustainable food systems, the conventional narratives that prioritize seafood's role in promoting ‘ocean health’ need to be reframed and cover a broader set of environmental and social dimensions of sustainability. The focus of the narrative also needs to move from a producer-centric to a ‘whole chain’ perspective that includes greater inclusion of the later stages with a focus on food waste, by-product utilization and consumption. Moreover, seafood should not be treated as a single aggregated item in sustainability assessments. Rather, it should be recognized as a highly diverse set of foods, with variable environmental impacts, edible yield rates and nutritional profiles. Clarifying discussions around seafood will help to deepen the integration of fisheries and aquaculture into the global agenda on sustainable food production, trade and consumption, and assist governments, private sector actors, NGOs and academics alike in identifying where improvements can be made.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy