SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Henriksson Richard) ;pers:(Houlston Richard)"

Sökning: WFRF:(Henriksson Richard) > Houlston Richard

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Berntsson, Shala Ghaderi, et al. (författare)
  • Analysis of DNA repair gene polymorphisms and survival in low-grade and anaplastic gliomas
  • 2011
  • Ingår i: Journal of Neuro-Oncology. - : Springer Science and Business Media LLC. - 0167-594X .- 1573-7373. ; 105:3, s. 531-538
  • Tidskriftsartikel (refereegranskat)abstract
    • The purpose of this study was to explore the variation in DNA repair genes in adults with WHO grade II and III gliomas and their relationship to patient survival. We analysed a total of 1,458 tagging single-nucleotide polymorphisms (SNPs) that were selected to cover DNA repair genes, in 81 grade II and grade III gliomas samples, collected in Sweden and Denmark. The statistically significant genetic variants from the first dataset (P < 0.05) were taken forward for confirmation in a second dataset of 72 grade II and III gliomas from northern UK. In this dataset, eight gene variants mapping to five different DNA repair genes (ATM, NEIL1, NEIL2, ERCC6 and RPA4) which were associated with survival. Finally, these eight genetic variants were adjusted for treatment, malignancy grade, patient age and gender, leaving one variant, rs4253079, mapped to ERCC6, with a significant association to survival (OR 0.184, 95% CI 0.054-0.63, P = 0.007). We suggest a possible novel association between rs4253079 and survival in this group of patients with low-grade and anaplastic gliomas that needs confirmation in larger datasets.
  •  
2.
  • Bethke, Lara, et al. (författare)
  • CASP8 D302H and meningioma risk : an analysis of five case-control series
  • 2009
  • Ingår i: Cancer Letters. - Clare : Elsevier. - 0304-3835 .- 1872-7980. ; 273:2, s. 312-315
  • Tidskriftsartikel (refereegranskat)abstract
    • Caspase 8 (CASP8) is a key regulator of apoptosis or programmed cell death, and hence a defence against cancer. The CASP8 polymorphism D302H has recently been shown to influence the risk of breast cancer. We tested the hypothesis that the CASP8 polymorphism D302H may influence risk of meningioma through analysis of five independent series of case patients and controls (n=631 and 637, respectively). Carrier status for 302H was not associated with a statistically significantly increased risk (OR=1.16; 95% CI: 0.87-1.53; P=0.31) making it unlikely that this variant contributes to the inherited risk of meningioma.
  •  
3.
  • Bethke, Lara, et al. (författare)
  • Comprehensive analysis of DNA repair gene variants and risk of meningioma
  • 2008
  • Ingår i: Journal of the National Cancer Institute. - : Oxford University Press. - 0027-8874 .- 1460-2105. ; 100:4, s. 270-276
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Meningiomas account for up to 37% of all primary brain tumors. Genetic susceptibility to meningioma is well established, with the risk among relatives of meningioma patients being approximately threefold higher than that in the general population. A relationship between risk of meningioma and exposure to ionizing radiation is also well known and led us to examine whether variants in DNA repair genes contribute to disease susceptibility.Methods: We analyzed 1127 tagging single-nucleotide polymorphisms (SNPs) that were selected to capture most of the common variation in 136 DNA repair genes in five case–control series (631 case patients and 637 control subjects) from four countries in Europe. We also analyzed 388 putative functional SNPs in these genes for their association with meningioma. All statistical tests were two-sided.Results: The SNP rs4968451, which maps to intron 4 of the gene that encodes breast cancer susceptibility gene 1–interacting protein 1, was consistently associated with an increased risk of developing meningioma. Across the five studies, the association was highly statistically significant (trend odds ratio = 1.57, 95% confidence interval = 1.28 to 1.93; Ptrend = 8.95 × 10−6; P = .009 after adjusting for multiple testing).Conclusions: We have identified a novel association between rs4968451 and meningioma risk. Because approximately 28% of the European population are carriers of at-risk genotypes for rs4968451, the variant is likely to make a substantial contribution to the development of meningioma.
  •  
4.
  • Bethke, Lara, et al. (författare)
  • Comprehensive analysis of the role of DNA repair gene polymorphisms on risk of glioma
  • 2008
  • Ingår i: Human Molecular Genetics. - : Oxford University Press. - 0964-6906 .- 1460-2083. ; 17:6, s. 800-805
  • Tidskriftsartikel (refereegranskat)abstract
    • Much of the variation in inherited risk of glioma is likely to be explained by combinations of common low risk variants. The established relationship between glioma risk and exposure to ionizing radiation led us to examine whether variants in the DNA repair genes contribute to disease susceptibility. We evaluated 1127 haplotype-tagging single-nucleotide polymorphisms (SNPs) supplemented with 388 putative functional SNPs to capture most of the common variation in 136 DNA repair genes, in five unique case–control series from four different countries (1013 cases, 1016 controls). We identified 16 SNPs associated with glioma risk at the 1% significance level. The highest association observed across the five independent case–control datasets involved rs243356, which maps to intron 3 of CHAF1A (trend odds ratio, 1.32; 95% confidence interval 1.14–1.54; P = 0.0002; false-positive report probability = 0.055, based on a prior probability of 0.01). Our results provide additional support for the hypothesis that low penetrance variants contribute to the risk of developing glioma and suggest that a genetic variant located in or around the CHAF1A gene contributes to disease risk.
  •  
5.
  • Bethke, Lara, et al. (författare)
  • Functional polymorphisms in folate metabolism genes influence the risk of meningioma and glioma
  • 2008
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 17:5, s. 1195-1202
  • Tidskriftsartikel (refereegranskat)abstract
    • Folate metabolism plays an important role in carcinogenesis. To test the hypothesis that polymorphic variation in the folate metabolism genes 5,10-methylenetetrahydrofolate reductase (MTHFR), methionine synthase (MTRR), and methionine synthase reductase (MTR) influences the risk of primary brain tumors, we genotyped 1,005 glioma cases, 631 meningioma cases, and 1,101 controls for the MTHFR C677A and A1298C, MTRR A66G, and MTR A2756G variants. MTHFR C677T-A1298C diplotypes were associated with risk of meningioma (P = 0.002) and glioma (P = 0.02); risks were increased with genotypes associated with reduced MTHFR activity. The highest risk of meningioma was associated with heterozygosity for both MTHFR variants [odds ratio (OR), 2.11; 95% confidence interval (95% CI), 1.42-3.12]. The corresponding OR for glioma was 1.23 (95% CI, 0.91-1.66). A significant association between risk of meningioma and homozygosity for MTRR 66G was also observed (OR, 1.41; 95% CI, 1.02-1.94). Our findings provide support for the role of folate metabolism in the development of primary brain tumors. In particular, genotypes associated with increased 5,10-methylenetetrahydrofolate levels are associated with elevated risk.
  •  
6.
  • Bethke, Lara, et al. (författare)
  • The Common D302H Variant of CASP8 Is Associated with Risk of Glioma
  • 2008
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research (AACR). - 1055-9965 .- 1538-7755. ; 17:4, s. 987-989
  • Tidskriftsartikel (refereegranskat)abstract
    • Caspase 8 (CASP8) is a key regulator of apoptosis or programmed cell death, and, hence, a defense against cancer. We tested the hypothesis that the CASP8 polymorphism D302H influences risk of glioma through analysis of five series of glioma case patients and controls (n = 1,005 and 1,011, respectively). Carrier status for the rare allele of D302H was associated with a 1.37-fold increased risk (95% confidence interval, 1.10-1.70; P = 0.004). The association of CASP8 D302H with glioma risk indicates the importance of inherited variation in the apoptosis pathway in susceptibility to this form of primary brain tumor.
  •  
7.
  • Dobbins, Sara E., et al. (författare)
  • Common variation at 10p12.31 near MLLT10 influences meningioma risk
  • 2011
  • Ingår i: Nature Genetics. - London : Nature America, Inc.. - 1061-4036 .- 1546-1718. ; 43:9, s. 825-827
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify susceptibility loci for meningioma, we conducted a genome-wide association study of 859 affected individuals (cases) and 704 controls with validation in two independent sample sets totaling 774 cases and 1,764 controls. We identified a new susceptibility locus for meningioma at 10p12.31 (MLLT10, rs11012732, odds ratio = 1.46, P(combined) = 1.88 x 10(-14)). This finding advances our understanding of the genetic basis of meningioma development.
  •  
8.
  • Rajaraman, Preetha, et al. (författare)
  • Genome-wide association study of glioma and meta-analysis
  • 2012
  • Ingår i: Human Genetics. - : SPRINGER. - 0340-6717 .- 1432-1203. ; 131:12, s. 1877-1888
  • Tidskriftsartikel (refereegranskat)abstract
    • Gliomas account for approximately 80 % of all primary malignant brain tumors and, despite improvements in clinical care over the last 20 years, remain among the most lethal tumors, underscoring the need for gaining new insights that could translate into clinical advances. Recent genome-wide association studies (GWAS) have identified seven new susceptibility regions. We conducted a new independent GWAS of glioma using 1,856 cases and 4,955 controls (from 14 cohort studies, 3 case-control studies, and 1 population-based case-only study) and found evidence of strong replication for three of the seven previously reported associations at 20q13.33 (RTEL), 5p15.33 (TERT), and 9p21.3 (CDKN2BAS), and consistent association signals for the remaining four at 7p11.2 (EGFR both loci), 8q24.21 (CCDC26) and 11q23.3 (PHLDB1). The direction and magnitude of the signal were consistent for samples from cohort and case-control studies, but the strength of the association was more pronounced for loci rs6010620 (20q,13.33; RTEL) and rs2736100 (5p15.33, TERT) in cohort studies despite the smaller number of cases in this group, likely due to relatively more higher grade tumors being captured in the cohort studies. We further examined the 85 most promising single nucleotide polymorphism (SNP) markers identified in our study in three replication sets (5,015 cases and 11,601 controls), but no new markers reached genome-wide significance. Our findings suggest that larger studies focusing on novel approaches as well as specific tumor subtypes or subgroups will be required to identify additional common susceptibility loci for glioma risk.
  •  
9.
  • Shete, Sanjay, et al. (författare)
  • Genome-wide association study identifies five susceptibility loci for glioma.
  • 2009
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 41:8, s. 899-904
  • Tidskriftsartikel (refereegranskat)abstract
    • To identify risk variants for glioma, we conducted a meta-analysis of two genome-wide association studies by genotyping 550K tagging SNPs in a total of 1,878 cases and 3,670 controls, with validation in three additional independent series totaling 2,545 cases and 2,953 controls. We identified five risk loci for glioma at 5p15.33 (rs2736100, TERT; P = 1.50 x 10(-17)), 8q24.21 (rs4295627, CCDC26; P = 2.34 x 10(-18)), 9p21.3 (rs4977756, CDKN2A-CDKN2B; P = 7.24 x 10(-15)), 20q13.33 (rs6010620, RTEL1; P = 2.52 x 10(-12)) and 11q23.3 (rs498872, PHLDB1; P = 1.07 x 10(-8)). These data show that common low-penetrance susceptibility alleles contribute to the risk of developing glioma and provide insight into disease causation of this primary brain tumor.
  •  
10.
  • Shete, Sanjay, et al. (författare)
  • Genome-wide high-density SNP linkage search for glioma susceptibility loci : results from the gliogene consortium
  • 2011
  • Ingår i: Cancer Research. - 0008-5472 .- 1538-7445. ; 71:24, s. 7568-7575
  • Tidskriftsartikel (refereegranskat)abstract
    • Gliomas, which generally have a poor prognosis, are the most common primary malignant brain tumors in adults. Recent genome-wide association studies have shown that inherited susceptibility plays a role in the development of glioma. Although first-degree relatives of patients exhibit a two-fold increased risk of glioma, the search for susceptibility loci in familial forms of the disease has been challenging because the disease is relatively rare, fatal, and heterogeneous, making it difficult to collect sufficient biosamples from families for statistical power. To address this challenge, the Genetic Epidemiology of Glioma International Consortium (Gliogene) was formed to collect DNA samples from families with two or more cases of histologically confirmed glioma. In this study, we present results obtained from 46 U.S. families in which multipoint linkage analyses were undertaken using nonparametric (model-free) methods. After removal of high linkage disequilibrium single-nucleotide polymorphism, we obtained a maximum nonparametric linkage score (NPL) of 3.39 (P = 0.0005) at 17q12-21.32 and the Z-score of 4.20 (P = 0.000007). To replicate our findings, we genotyped 29 independent U.S. families and obtained a maximum NPL score of 1.26 (P = 0.008) and the Z-score of 1.47 (P = 0.035). Accounting for the genetic heterogeneity using the ordered subset analysis approach, the combined analyses of 75 families resulted in a maximum NPL score of 3.81 (P = 0.00001). The genomic regions we have implicated in this study may offer novel insights into glioma susceptibility, focusing future work to identify genes that cause familial glioma. Cancer Res; 71(24); 7568-75. (C) 2011 AACR.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy