SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Herwald Heiko) ;hsvcat:3;pers:(Zhang Su)"

Search: WFRF:(Herwald Heiko) > Medical and Health Sciences > Zhang Su

  • Result 1-8 of 8
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zhang, Su, et al. (author)
  • STREPTOCOCCAL M1 PROTEIN-INDUCED LUNG INJURY IS INDEPENDENT OF PLATELETS IN MICE.
  • 2011
  • In: Shock. - 1540-0514. ; Jul 1, s. 86-91
  • Journal article (peer-reviewed)abstract
    • Streptococcus pyogenes of the M1 serotype is frequently associated with severe streptococcal infections. M1 protein challenge can cause widespread microthrombosis, suggesting a role of platelets in streptococcal sepsis. Herein, we hypothesized that platelets may play a role in M1 protein-induced lung inflammation and injury. M1 protein was injected intravenously in C57Bl/6 mice. For platelet and neutrophil depletion, an anti-GP1balpha antibody and an anti-Gr-1 antibody, respectively, were administered prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for analysis of neutrophil infiltration, edema and macrophage inflammatory protein-2 (MIP-2) formation. Blood was collected for analysis of membrane-activated complex-1 (Mac-1) and CD40 ligand (CD40L) expression on neutrophils and platelets as well as soluble CD40L in plasma. M1 protein caused significant pulmonary damage characterized by neutrophil infiltration, increased formation of edema and MIP-2 in the lung as well as enhanced Mac-1 expression on neutrophils. However, M1 protein challenge had no effect on platelet surface expression of CD40L or soluble CD40L levels in plasma. Interestingly, platelet depletion had no influence on M1 protein-induced neutrophil recruitment, MIP-2 production and tissue damage in the lung or Mac-1 expression on neutrophils. Moreover, we observed that M1 protein could bind to neutrophils but not to platelets. On the other hand, neutrophil depletion abolished M1 protein-induced edema formation and tissue damage in the lung. Our data suggest that neutrophils but not platelets are involved in the pathophysiology of M1 protein-provoked pulmonary damage. Thus, neutrophils may constitute a key target in infections caused by Streptococcus pyogenes of the M1 serotype.
  •  
2.
  • Zhang, Songen, et al. (author)
  • Streptococcal M1 protein triggers farnesyltransferase-dependent formation of CXC chemokines in alveolar macrophages and neutrophil infiltration in the lung.
  • 2012
  • In: Infection and Immunity. - 1098-5522. ; 80:11, s. 3952-3959
  • Journal article (peer-reviewed)abstract
    • M1 serotype of Streptococcus pyogenes plays an important role in streptococcal toxic shock syndrome. Simvastatin, a HMG-CoA reductase inhibitor, has been shown to inhibit streptococcal M1 protein-induced acute lung damage although downstream mechanisms remain elusive. Protein isoprenylation, such as farnesylation and geranylgeranylation, has been suggested to regulate anti-inflammatory effects exerted by statins. Herein, we examined the effect of a farnesyltransferase inhibitor (FTI-277) on M1 protein-triggered lung inflammation. Male C57BL/6 mice were treated with FTI-277 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Flow cytometry was used to determine Mac-1 expression on neutrophils. Gene expression of CXC chemokines was determined in alveolar macrophages by using quantitative RT-PCR. We found that administration of FTI-277 markedly decreased M1 protein-induced accumulation of neutrophils, edema formation and tissue damage in the lung. Notably, inhibition of farnesyltransferase abolished M1 protein-evoked production of CXC chemokines in the lung and gene expression of CXC chemokines in alveolar macrophages. Moreover, FTI-277 completely inhibited chemokine-induced neutrophil migration in vitro. However, farnesyltransferase inhibition had no effect on M1 protein-induced expression of Mac-1 on neutrophils. Our findings suggest that farnesyltransferase is a potent regulator of CXC chemokine formation in alveolar macrophages and that inhibition of farnesyltransferase not only reduces neutrophil recruitment but also attenuates acute lung injury provoked by streptococcal M1 protein. We conclude that farnesyltransferase activity is a potential target in order to attenuate acute lung damage in streptococcal infections.
  •  
3.
  • Zhang, Songen, et al. (author)
  • Targeting rac1 signaling inhibits streptococcal m1 protein-induced CXC chemokine formation, neutrophil infiltration and lung injury.
  • 2013
  • In: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:8
  • Journal article (peer-reviewed)abstract
    • Infections with Streptococcus pyogenes exhibit a wide spectrum of infections ranging from mild pharyngitis to severe Streptococcal toxic shock syndrome (STSS). The M1 serotype of Streptococcus pyogenes is most commonly associated with STSS. In the present study, we hypothesized that Rac1 signaling might regulate M1 protein-induced lung injury. We studied the effect of a Rac1 inhibitor (NSC23766) on M1 protein-provoked pulmonary injury. Male C57BL/6 mice received NSC23766 prior to M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for quantification of neutrophil recruitment, edema and CXC chemokine formation. Neutrophil expression of Mac-1 was quantified by use of flow cytometry. Quantitative RT-PCR was used to determine gene expression of CXC chemokines in alveolar macrophages. Treatment with NSC23766 decreased M1 protein-induced neutrophil infiltration, edema formation and tissue injury in the lung. M1 protein challenge markedly enhanced Mac-1 expression on neutrophils and CXC chemokine levels in the lung. Inhibition of Rac1 activity had no effect on M1 protein-induced expression of Mac-1 on neutrophils. However, Rac1 inhibition markedly decreased M1 protein-evoked formation of CXC chemokines in the lung. Moreover, NSC23766 completely inhibited M1 protein-provoked gene expression of CXC chemokines in alveolar macrophages. We conclude that these novel results suggest that Rac1 signaling is a significant regulator of neutrophil infiltration and CXC chemokine production in the lung. Thus, targeting Rac1 activity might be a potent strategy to attenuate streptococcal M1 protein-triggered acute lung damage.
  •  
4.
  • Zhang, Songen, et al. (author)
  • p38 Mitogen-activated protein kinase signaling regulates streptococcal M1 protein-induced neutrophil activation and lung injury.
  • 2012
  • In: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 1938-3673 .- 0741-5400. ; 91, s. 137-145
  • Journal article (peer-reviewed)abstract
    • M1 serotype of Streptococcus pyogenes can cause STSS and acute lung damage. Herein, the purpose was to define the role of p38 MAPK signaling in M1 protein-induced pulmonary injury. Male C57BL/6 mice were treated with specific p38 MAPK inhibitors (SB 239063 and SKF 86002) prior to M1 protein challenge. Edema, neutrophil infiltration, and CXC chemokines were determined in the lung, 4 h after M1 protein administration. Flow cytometry was used to determine Mac-1 expression. Phosphorylation and activity of p38 MAPK were determined by immunoprecipitation and Western blot. IVM was used to analyze leukocyte-endothelium interactions in the pulmonary microcirculation. M1 protein challenge increased phosphorylation and activity of p38 MAPK in the lung, which was inhibited by SB 239063 and SKF 86002. Inhibition of p38 MAPK activity decreased M1 protein-induced infiltration of neutrophils, edema, and CXC chemokine formation in the lung, as well as Mac-1 up-regulation on neutrophils. IVM showed that p38 MAPK inhibition reduced leukocyte rolling and adhesion in the pulmonary microvasculature of M1 protein-treated mice. Our results indicate that p38 MAPK signaling regulates neutrophil infiltration in acute lung injury induced by streptococcal M1 protein. Moreover, p38 MAPK activity controls CXC chemokine formation in the lung, as well as neutrophil expression of Mac-1 and recruitment in the pulmonary microvasculature. In conclusion, these findings suggest that targeting the p38 MAPK signaling pathway may open new opportunities to protect against lung injury in streptococcal infections.
  •  
5.
  • Zhang, Songen, et al. (author)
  • Simvastatin regulates CXC chemokine formation in streptococcal M1 protein-induced neutrophil infiltration in the lung
  • 2011
  • In: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1522-1504 .- 1040-0605. ; 300:6, s. 930-939
  • Journal article (peer-reviewed)abstract
    • Zhang S, Rahman M, Zhang S, Qi Z, Herwald H, Thorlacius H. Simvastatin regulates CXC chemokine formation in streptococcal M1 protein-induced neutrophil infiltration in the lung. Am J Physiol Lung Cell Mol Physiol 300: L930-L939, 2011. First published March 25, 2011; doi:10.1152/ajplung.00422.2010.-Streptococcus pyogenes of the M1 serotype can cause streptococcal toxic shock syndrome and acute lung injury. Statins exert beneficial effects in septic patients although the mechanisms remain elusive. This study examined effects of simvastatin on M1 protein-provoked pulmonary inflammation and tissue injury. Male C57BL/6 mice were pretreated with simvastatin or a CXCR2 antagonist before M1 protein challenge. Bronchoalveolar fluid and lung tissue were harvested for determination of neutrophil infiltration, formation of edema, and CXC chemokines. Flow cytometry was used to determine Mac-1 expression on neutrophils. Gene expression of CXC chemokines was determined in alveolar macrophages by using quantitative RT-PCR. M1 protein challenge caused massive infiltration of neutrophils, edema formation, and production of CXC chemokines in the lung as well as upregulation of Mac-1 on circulating neutrophils. Simvastatin reduced M1 protein-induced infiltration of neutrophils and edema in the lung. In addition, M1 protein-induced Mac-1 expression on neutrophils was abolished by simvastatin. Furthermore, simvastatin markedly decreased pulmonary formation of CXC chemokines and gene expression of CXC chemokines in alveolar macrophages. Moreover, the CXCR2 antagonist reduced M1 protein-induced neutrophil expression of Mac-1 and accumulation of neutrophils as well as edema formation in the lung. These novel findings indicate that simvastatin is a powerful inhibitor of neutrophil infiltration in acute lung damage triggered by streptococcal M1 protein. The inhibitory effect of simvastatin on M1 protein-induced neutrophil recruitment appears related to reduced pulmonary generation of CXC chemokines. Thus, simvastatin may be a useful tool to ameliorate acute lung injury in streptococcal infections.
  •  
6.
  •  
7.
  • Zhang, Songen, et al. (author)
  • Streptococcal M1 Protein-Provoked CXC Chemokine Formation, Neutrophil Recruitment and Lung Damage Are Regulated by Rho-Kinase Signaling.
  • 2012
  • In: Journal of Innate Immunity. - : S. Karger AG. - 1662-811X .- 1662-8128. ; 4:4, s. 399-408
  • Journal article (peer-reviewed)abstract
    • Streptococcal toxic shock syndrome is frequently caused by Streptococcus pyogenes of the M1 serotype. The aim of this study was to determine the role of Ras-homologous (Rho)-kinase signaling in M1 protein-provoked lung damage. Male C57BL/6 mice received the Rho-kinase-specific inhibitor Y-27632 before administration of M1 protein. Edema, neutrophil accumulation and CXC chemokines were quantified in the lung 4 h after M1 protein challenge. Flow cytometry was used to determine Mac-1 expression. Quantitative RT-PCR was used to determine gene expression of CXC chemokine mRNA in alveolar macrophages. M1 protein increased neutrophil accumulation, edema and CXC chemokine formation in the lung as well as enhanced Mac-1 expression on neutrophils. Inhibition of Rho-kinase signaling significantly reduced M1 protein-provoked neutrophil accumulation and edema formation in the lung. M1 protein-triggered pulmonary production of CXC chemokine and gene expression of CXC chemokines in alveolar macrophages was decreased by Y-27632. Moreover, Rho-kinase inhibition attenuated M1 protein-induced Mac-1 expression on neutrophils. We conclude that Rho-kinase-dependent neutrophil infiltration controls pulmonary tissue damage in response to streptococcal M1 protein and that Rho-kinase signaling regulates M1 protein-induced lung recruitment of neutrophils via the formation of CXC chemokines and Mac-1 expression.
  •  
8.
  • Zhang, Songen, et al. (author)
  • Streptococcal M1 protein triggers chemokine formation, neutrophil infiltration, and lung injury in an NFAT-dependent manner.
  • 2015
  • In: Journal of Leukocyte Biology. - 1938-3673. ; 97:6, s. 1003-1010
  • Journal article (peer-reviewed)abstract
    • Streptococcus pyogenes of the M1 serotype can cause STSS, which is associated with significant morbidity and mortality. The purpose of the present study was to examine the role of NFAT signaling in M1 protein-induced lung injury. NFAT-luc mice were treated with the NFAT inhibitor A-285222 before administration of the M1 protein. Neutrophil infiltration, edema, and CXC chemokines were quantified in the lung, 4 h after challenge with the M1 protein. Flow cytometry was used to determine Mac-1 expression. Challenge with the M1 protein increased NFAT-dependent transcriptional activity in the lung, spleen, and liver in NFAT-luc mice. Administration of the NFAT inhibitor A-285222 abolished M1 protein-evoked NFAT activation in the lung, spleen, and liver. M1 protein challenge induced neutrophil recruitment, edema, and CXC chemokine production in the lung, as well as up-regulation of Mac-1 on circulating neutrophils. Inhibition of NFAT activity attenuated M1 protein-induced neutrophil infiltration by 77% and edema formation by 50% in the lung. Moreover, administration of A-285222 reduced M1 protein-evoked pulmonary formation of CXC chemokine >80%. In addition, NFAT inhibition decreased M1 protein-triggered Mac-1 up-regulation on neutrophils. These findings indicate that NFAT signaling controls pulmonary infiltration of neutrophils in response to streptococcal M1 protein via formation of CXC chemokines and neutrophil expression of Mac-1. Thus, the targeting of NFAT activity might be a useful way to ameliorate lung injury in streptococcal infections.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-8 of 8
Type of publication
journal article (7)
conference paper (1)
Type of content
peer-reviewed (8)
Author/Editor
Thorlacius, Henrik (8)
Herwald, Heiko (8)
Zhang, Songen (8)
Rahman, Milladur (7)
Jeppsson, Bengt (3)
show more...
Qi, Zhongquan (2)
Gomez, Maria (1)
Song, Lei (1)
Wang, Yongzhi (1)
Garcia Vaz, Eliana (1)
show less...
University
Lund University (8)
Language
English (8)
Research subject (UKÄ/SCB)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view