SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Herwald Heiko) ;pers:(Wang Yongzhi)"

Sökning: WFRF:(Herwald Heiko) > Wang Yongzhi

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Yongzhi, et al. (författare)
  • Neutrophil extracellular trap-microparticle complexes enhance thrombin generation via the intrinsic pathway of coagulation in mice
  • 2018
  • Ingår i: Scientific Reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Abdominal sepsis is associated with dysfunctional hemostasis. Thrombin generation (TG) is a rate-limiting step in systemic coagulation. Neutrophils can expell neutrophil extracellular traps (NETs) and/or microparticles (MPs) although their role in pathological coagulation remains elusive. Cecal ligation and puncture (CLP)-induced TG in vivo was reflected by a reduced capacity of plasma from septic animals to generate thrombin. Depletion of neutrophils increased TG in plasma from CLP mice. Sepsis was associated with increased histone 3 citrullination in neutrophils and plasma levels of cell-free DNA and DNA-histone complexes and administration of DNAse not only eliminated NET formation but also elevated TG in sepsis. Isolated NETs increased TG and co-incubation with DNAse abolished NET-induced formation of thrombin. TG triggered by NETs was inhibited by blocking factor XII and abolished in factor XII-deficient plasma but intact in factor VII-deficient plasma. Activation of neutrophils simultaneously generated large amount of neutrophil-derived MPs, which were found to bind to NETs via histone-phosphatidylserine interactions. These findings show for the first time that NETs and MPs physically interact, and that NETs might constitute a functional assembly platform for MPs. We conclude that NET-MP complexes induce TG via the intrinsic pathway of coagulation and that neutrophil-derived MPs play a key role in NET-dependent coagulation.
  •  
2.
  • Zhang, Songen, et al. (författare)
  • p38 Mitogen-activated protein kinase signaling regulates streptococcal M1 protein-induced neutrophil activation and lung injury.
  • 2012
  • Ingår i: Journal of Leukocyte Biology. - : Oxford University Press (OUP). - 1938-3673 .- 0741-5400. ; 91, s. 137-145
  • Tidskriftsartikel (refereegranskat)abstract
    • M1 serotype of Streptococcus pyogenes can cause STSS and acute lung damage. Herein, the purpose was to define the role of p38 MAPK signaling in M1 protein-induced pulmonary injury. Male C57BL/6 mice were treated with specific p38 MAPK inhibitors (SB 239063 and SKF 86002) prior to M1 protein challenge. Edema, neutrophil infiltration, and CXC chemokines were determined in the lung, 4 h after M1 protein administration. Flow cytometry was used to determine Mac-1 expression. Phosphorylation and activity of p38 MAPK were determined by immunoprecipitation and Western blot. IVM was used to analyze leukocyte-endothelium interactions in the pulmonary microcirculation. M1 protein challenge increased phosphorylation and activity of p38 MAPK in the lung, which was inhibited by SB 239063 and SKF 86002. Inhibition of p38 MAPK activity decreased M1 protein-induced infiltration of neutrophils, edema, and CXC chemokine formation in the lung, as well as Mac-1 up-regulation on neutrophils. IVM showed that p38 MAPK inhibition reduced leukocyte rolling and adhesion in the pulmonary microvasculature of M1 protein-treated mice. Our results indicate that p38 MAPK signaling regulates neutrophil infiltration in acute lung injury induced by streptococcal M1 protein. Moreover, p38 MAPK activity controls CXC chemokine formation in the lung, as well as neutrophil expression of Mac-1 and recruitment in the pulmonary microvasculature. In conclusion, these findings suggest that targeting the p38 MAPK signaling pathway may open new opportunities to protect against lung injury in streptococcal infections.
  •  
3.
  • Zhang, Songen, et al. (författare)
  • Targeting CD162 protects against streptococcal M1 protein-evoked neutrophil recruitment and lung injury
  • 2013
  • Ingår i: American Journal of Physiology: Lung Cellular and Molecular Physiology. - : American Physiological Society. - 1522-1504 .- 1040-0605. ; 305:10, s. 756-763
  • Tidskriftsartikel (refereegranskat)abstract
    • Streptococcus pyogenes of the M1 serotype can cause streptococcal toxic shock syndrome and acute lung damage. CD162 is an adhesion molecule that has been reported to mediate neutrophil recruitment in acute inflammatory reactions. In this study, the purpose was to investigate the role of CD162 in M1 protein-provoked lung injury. Male C57BL/6 mice were treated with monoclonal antibody directed against CD162 or a control antibody before M1 protein challenge. Edema, neutrophil infiltration, and CXC chemokines were determined in the lung, 4 h after M1 protein administration. Fluorescence intravital microscopy was used to analyze leukocyte-endothelium interactions in the pulmonary microcirculation. Inhibition of CD162 reduced M1 protein-provoked accumulation of neutrophils, edema, and CXC chemokine formation in the lung by >54%. Moreover, immunoneutralization of CD162 abolished leukocyte rolling and firm adhesion in pulmonary venules of M1 protein-treated animals. In addition, inhibition of CD162 decreased M1 protein-induced capillary trapping of leukocytes in the lung microvasculature and improved microvascular perfusion in the lungs of M1 protein-treated animals. Our findings suggest that CD162 plays an important role in M1 protein-induced lung damage by regulating leukocyte rolling in pulmonary venules. Consequently, inhibition of CD162 attenuates M1 protein-evoked leukocyte adhesion and extravasation in the lung. Thus, our results suggest that targeting the CD162 might pave the way for novel opportunities to protect against pulmonary damage in streptococcal infections.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy