SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Heywood M) "

Sökning: WFRF:(Heywood M)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thomas, HS, et al. (författare)
  • 2019
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  • Veres, P., et al. (författare)
  • Observation of inverse Compton emission from a long gamma-ray burst
  • 2019
  • Ingår i: Nature. - : NATURE PUBLISHING GROUP. - 0028-0836 .- 1476-4687. ; 575:7783, s. 459-
  • Tidskriftsartikel (refereegranskat)abstract
    • Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectron volt-to-mega electronvoltband, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission(1,2). Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands(1-6). The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock(7-9). Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C(10,11). Here we report multifrequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 x 10(-6) to 10(12) electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs.
  •  
5.
  • Chibueze, J. O., et al. (författare)
  • A MeerKAT, e-MERLIN, HESS, and Swift search for persistent and transient emission associated with three localized FRBs
  • 2022
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press. - 0035-8711 .- 1365-2966. ; 515:1, s. 1365-1379
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on a search for persistent radio emission from the one-off fast radio burst (11(B) 20190714A, as well as from two repeating FRBs, 20190711A and 20171019A, using the MeerKAT radio telescope. For FRB 20171019A, we also conducted simultaneous observations with the High-Energy Stereoscopic System (H.E.S.S.) in very high-energy gamma rays and searched for signals in the ultraviolet, optical, and X-ray bands. For this FRB, we obtain a UV flux upper limit of 1.39 x 10(-16) erg cm(-2) s(-1) angstrom(-1), X-ray limit of similar to 6.6 x 10(-14) erg cm(-2) s(-1) and a limit on the very high energy gamma-ray flux Phi(E > 120 GeV) < 1.7 x 10(-12) erg cm(-2) S-1. We obtain a radio upper limit of similar to 15 mu Jy beam(-1) for persistent emission at the locations of both FRBs 20190711A and 20171019A with MeerKAT. However, we detected an almost unresolved (ratio of integrated flux to peak flux is similar to 1.7 beam) radio emission, where the synthesized beam size was similar to 8 arcsec size with a peak brightness of similar to 53 mu Jy beam(-1) at MeerKAT and similar to 86 mu Jy beam(-1) at e-MERLIN, possibly associated with FRB 20190714A at z = 0.2365. This represents the first detection of persistent continuum radio emission potentially associated with a (as-yet) non- repeating FRB. If the association is confirmed, one of the strongest remaining distinction between repeaters and non-repeaters would no longer be applicable. A parallel search for repeat bursts from these FRBs revealed no new detections down to a fluence of 0.08 Jy ms for a 1 ms duration burst.
  •  
6.
  • Heywood, I., et al. (författare)
  • Inflation of 430-parsec bipolar radio bubbles in the Galactic Centre by an energetic event
  • 2019
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 573:7773, s. 235-237
  • Tidskriftsartikel (refereegranskat)abstract
    • The Galactic Centre contains a supermassive black hole with a mass of four million Suns1 within an environment that differs markedly from that of the Galactic disk. Although the black hole is essentially quiescent in the broader context of active galactic nuclei, X-ray observations have provided evidence for energetic outbursts from its surroundings2. Also, although the levels of star formation in the Galactic Centre have been approximately constant over the past few hundred million years, there is evidence of increased short-duration bursts3, strongly influenced by the interaction of the black hole with the enhanced gas density present within the ring-like central molecular zone4 at Galactic longitude |l| < 0.7 degrees and latitude |b| < 0.2 degrees. The inner 200-parsec region is characterized by large amounts of warm molecular gas5, a high cosmic-ray ionization rate6, unusual gas chemistry, enhanced synchrotron emission7,8, and a multitude of radio-emitting magnetized filaments9, the origin of which has not been established. Here we report radio imaging that reveals a bipolar bubble structure, with an overall span of 1 degree by 3 degrees (140 parsecs × 430 parsecs), extending above and below the Galactic plane and apparently associated with the Galactic Centre. The structure is edge-brightened and bounded, with symmetry implying creation by an energetic event in the Galactic Centre. We estimate the age of the bubbles to be a few million years, with a total energy of 7 × 1052 ergs. We postulate that the progenitor event was a major contributor to the increased cosmic-ray density in the Galactic Centre, and is in turn the principal source of the relativistic particles required to power the synchrotron emission of the radio filaments within and in the vicinity of the bubble cavities.
  •  
7.
  • Davis, P. E. D., et al. (författare)
  • Suppressed basal melting in the eastern Thwaites Glacier grounding zone
  • 2023
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 614:7948, s. 479-
  • Tidskriftsartikel (refereegranskat)abstract
    • Thwaites Glacier is one of the fastest-changing ice-ocean systems in Antarctica(1-3). Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland(4), making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre(2,3,5). The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat(3,6), both of which are largely unknown. Here we show-using observations from a hot-water-drilled access hole-that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice-ocean boundary layer actively restrict the vertical mixing of heat towards the ice base(7,8), resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates.
  •  
8.
  • Jarvis, M.J., et al. (författare)
  • The discovery of a z = 0.7092 OH megamaser with the MIGHTEE survey
  • 2024
  • Ingår i: Monthly Notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 529:4, s. 3484-3494
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the discovery of the most distant OH megamaser (OHM) to be observed in the main lines, using data from the MeerKAT International Giga-Hertz Tiered Extragalactic Exploration (MIGHTEE) survey. At a newly measured redshift of z = 0.7092, the system has strong emission in both the 1665 MHz (L ≈ 2500 L-) and 1667 MHz (L ≈ 4.5 × 104 L-) transitions, with both narrow and broad components. We interpret the broad line as a high-velocity-dispersion component of the 1667 MHz transition, with velocity v ∼330 km s-1 with respect to the systemic velocity. The host galaxy has a stellar mass of M = 2.95 × 1010 M- and a star formation rate of SFR = 371 M- yr-1, placing it ∼1.5 dex above the main sequence for star-forming galaxies at this redshift, and can be classified as an ultraluminous infrared galaxy. Alongside the optical imaging data, which exhibit evidence for a tidal tail, this suggests that the OHM arises from a system that is currently undergoing a merger, which is stimulating star formation and providing the necessary conditions for pumping the OH molecule to saturation. The OHM is likely to be lensed, with a magnification factor of ∼2.5, and perhaps more if the maser emitting region is compact and suitably offset relative to the centroid of its host galaxy's optical light. This discovery demonstrates that spectral line mapping with the new generation of radio interferometers may provide important information on the cosmic merger history of galaxies.
  •  
9.
  • Russell, T. D., et al. (författare)
  • Disk-Jet Coupling in the 2017/2018 Outburst of the Galactic Black Hole Candidate X-Ray Binary MAXI J1535-571
  • 2019
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 883:2
  • Tidskriftsartikel (refereegranskat)abstract
    • MAXI J1535-571 is a Galactic black hole candidate X-ray binary that was discovered going into outburst in 2017 September. In this paper, we present comprehensive radio monitoring of this system using the Australia Telescope Compact Array, as well as the MeerKAT radio observatory, showing the evolution of the radio jet during its outburst. Our radio observations show the early rise and subsequent quenching of the compact jet as the outburst brightened and then evolved toward the soft state. We constrain the compact jet quenching factor to be more than 3.5 orders of magnitude. We also detected and tracked (for 303 days) a discrete, relativistically moving jet knot that was launched from the system. From the motion of the apparently superluminal knot, we constrain the jet inclination (at the time of ejection) and speed to = 0.69 c, respectively. Extrapolating its motion back in time, our results suggest that the jet knot was ejected close in time to the transition from the hard intermediate state to soft intermediate state. The launching event also occurred contemporaneously with a short increase in X-ray count rate, a rapid drop in the strength of the X-ray variability, and a change in the type-C quasi-periodic oscillation (QPO) frequency that occurs >2.5 days before the first appearance of a possible type-B QPO.
  •  
10.
  • Graham, Robert M., et al. (författare)
  • Southern Ocean fronts : Controlled by wind or topography?
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117
  • Tidskriftsartikel (refereegranskat)abstract
    • The location of fronts has a direct influence on both the physical and biological processes in the Southern Ocean. Here we explore the relative importance of bottom topography and winds for the location of Southern Ocean fronts, using 100 years of a control and climate change simulation from the high resolution coupled climate model HiGEM. Topography has primary control on the number and intensity of fronts at each longitude. However, there is no strong relationship between the position or spacing of jets and underlying topographic gradients because of the effects of upstream and downstream topography. The Southern Hemisphere Westerlies intensify and shift south by 1.3 degrees in the climate change simulation, but there is no comparable meridional displacement of the Antarctic Circumpolar Current's (ACC) path or the fronts within its boundaries, even over flat topography. Instead, the current contracts meridionally and weakens. North of the ACC, the Subtropical Front (STF) shifts south gradually, even over steep topographic ridges. We suggest the STF reacts more strongly to the wind shift because it is strongly surface intensified. In contrast, fronts within the ACC are more barotropic and are therefore more sensitive to the underlying topography. An assessment of different methods for identifying jets reveals that maxima of gradients in the sea surface height field are the most reliable. Approximating the position of fronts using sea surface temperature gradients is ineffective at high latitudes while using sea surface height contours can give misleading results when studying the temporal variability of front locations.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy