SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hirons Andrew) "

Sökning: WFRF:(Hirons Andrew)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kattge, Jens, et al. (författare)
  • TRY plant trait database - enhanced coverage and open access
  • 2020
  • Ingår i: Global Change Biology. - : Wiley-Blackwell. - 1354-1013 .- 1365-2486. ; 26:1, s. 119-188
  • Tidskriftsartikel (refereegranskat)abstract
    • Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives.
  •  
2.
  • Sjöman, Henrik, et al. (författare)
  • Resilient trees for urban environments: The importance of intraspecific variation
  • 2024
  • Ingår i: PLANTS PEOPLE PLANET. - 2572-2611.
  • Tidskriftsartikel (refereegranskat)abstract
    • Societal Impact StatementTrees in urban environments provide us with shade, heat mitigation, flood abatement, noise and pollution reduction, pollination, beauty, and much more. However, many of these benefits are strongly connected to tree size and vitality, with larger, healthier trees providing ecosystem services more effectively, which means that selecting the right tree for site and function is crucial in order to gain all benefits from our urban trees.SummaryTrees play a major role in the Earth's biogeochemical processes, influencing soil production, hydrological, nutrient and carbon cycles, and the global climate. They store about 50% of the world's terrestrial carbon stocks, and provide habitats for a wide range of other species, supporting at least half of the Earth's known terrestrial plants and animals. Trees are not only found in forests and other natural ecosystems, but also in urban environments. Most of the human population is concentrated in cities, towns and villages, so urban trees are critical to meet on-going and future social, economic and environmental challenges. However, many urban tree populations are strongly challenged by a changing climate, outbreaks of pests and pathogens and an urban development with increasingly dense cities and a high proportion of impermeable surface materials. The importance of intraspecific variation needs to be better acknowledged in this context, since poor matching of trees and the local climate and growing conditions can lead to extensive loss of valuable trees. By using the right genetic plant material for the challenging urban environments, a more resilient tree population with a greater diversity and higher capacity for delivering ecosystem services can be gained. Here, we wish to discuss the need to consider intraspecific variation when planning resilient tree populations for urban environments and how seed banks and botanical garden play important roles in efforts to improve the matching of genetic plant material for future environmental challenges. Strategies to enrich urban tree diversity and increase resilience are outlined. Trees in urban environments provide us with shade, heat mitigation, flood abatement, noise and pollution reduction, pollination, beauty, and much more. However, many of these benefits are strongly connected to tree size and vitality, with larger, healthier trees providing ecosystem services more effectively, which means that selecting the right tree for site and function is crucial in order to gain all benefits from our urban trees. image
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy