SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hjalmarsson A) ;lar1:(liu)"

Search: WFRF:(Hjalmarsson A) > Linköping University

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Ericsson, Leon, et al. (author)
  • Generalized super-resolution 4D Flow MRI - using ensemble learning to extend across the cardiovascular system
  • 2024
  • In: IEEE journal of biomedical and health informatics. - 2168-2194 .- 2168-2208. ; , s. 1-12
  • Journal article (peer-reviewed)abstract
    • 4D Flow Magnetic Resonance Imaging (4D Flow MRI) is a non-invasive measurement technique capable of quantifying blood flow across the cardiovascular system. While practical use is limited by spatial resolution and image noise, incorporation of trained super-resolution (SR) networks has potential to enhance image quality post-scan. However, these efforts have predominantly been restricted to narrowly defined cardiovascular domains, with limited exploration of how SR performance extends across the cardiovascular system; a task aggravated by contrasting hemodynamic conditions apparent across the cardiovasculature. The aim of our study was therefore to explore the generalizability of SR 4D Flow MRI using a combination of existing super-resolution base models, novel heterogeneous training sets, and dedicated ensemble learning techniques; the latter-most being effectively used for improved domain adaption in other domains or modalities, however, with no previous exploration in the setting of 4D Flow MRI. With synthetic training data generated across three disparate domains (cardiac, aortic, cerebrovascular), varying convolutional base and ensemble learners were evaluated as a function of domain and architecture, quantifying performance on both in-silico and acquired in-vivo data from the same three domains. Results show that both bagging and stacking ensembling enhance SR performance across domains, accurately predicting high-resolution velocities from low-resolution input data in-silico. Likewise, optimized networks successfully recover native resolution velocities from downsampled in-vivo data, as well as show qualitative potential in generating denoised SR-images from clinicallevel input data. In conclusion, our work presents a viable approach for generalized SR 4D Flow MRI, with the novel use of ensemble learning in the setting of advanced fullfield flow imaging extending utility across various clinical areas of interest.
  •  
2.
  • Juditsky, A., et al. (author)
  • Nonlinear black-box models in system identification: Mathematical foundations
  • 1995
  • In: Automatica. - Linköping : Elsevier BV. - 0005-1098 .- 1873-2836. ; 31:12, s. 1725-1750
  • Journal article (peer-reviewed)abstract
    • We discuss several aspects of the mathematical foundations of the nonlinear black-box identification problem. We shall see that the quality of the identification procedure is always a result of a certain trade-off between the expressive power of the model we try to identify (the larger the number of parameters used to describe the model, the more flexible is the approximation), and the stochastic error (which is proportional to the number of parameters). A consequence of this trade-off is the simple fact that a good approximation technique can be the basis of a good identification algorithm. From this point of view, we consider different approximation methods, and pay special attention to spatially adaptive approximants. We introduce wavelet and 'neuron' approximations, and show that they are spatially adaptive. Then we apply the acquired approximation experience to estimation problems. Finally, we consider some implications of these theoretical developments for the practically implemented versions of the 'spatially adaptive' algorithms. Copyright © 1995 Elsevier Science Ltd All rights reserved.
  •  
3.
  • Sjöberg, Jonas, et al. (author)
  • Nonlinear black-box modeling in system identification: A unified overview
  • 1995
  • In: Automatica. - Linköping : Elsevier BV. - 0005-1098 .- 1873-2836. ; 31:12, s. 1691-1724
  • Journal article (peer-reviewed)abstract
    • A nonlinear black-box structure for a dynamical system is a model structure that is prepared to describe virtually any nonlinear dynamics. There has been considerable recent interest in this area, with structures based on neural networks, radial basis networks, wavelet networks and hinging hyperplanes, as well as wavelet-transform-based methods and models based on fuzzy sets and fuzzy rules. This paper describes all these approaches in a common framework, from a user's perspective. It focuses on what are the common features in the different approaches, the choices that have to be made and what considerations are relevant for a successful system-identification application of these techniques. It is pointed out that the nonlinear structures can be seen as a concatenation of a mapping form observed data to a regression vector and a nonlinear mapping from the regressor space to the output space. These mappings are discussed separately. The latter mapping is usually formed as a basis function expansion. The basis functions are typically formed from one simple scalar function, which is modified in terms of scale and location. The expansion from the scalar argument to the regressor space is achieved by a radial- or a ridge-type approach. Basic techniques for estimating the parameters in the structures are criterion minimization, as well as two-step procedures, where first the relevant basis functions are determined, using data, and then a linear least-squares step to determine the coordinates of the function approximation. A particular problem is to deal with the large number of potentially necessary parameters. This is handled by making the number of 'used' parameters considerably less than the number of 'offered' parameters, by regularization, shrinking, pruning or regressor selection. Copyright © 1995 Elsevier Science Ltd All rights reserved.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view