SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoeflich Peter) "

Sökning: WFRF:(Hoeflich Peter)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Wang, Xiaofeng, et al. (författare)
  • Evidence for type ia supernova diversity from ultraviolet observations with the hubble space telescope
  • 2012
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 749:2, s. 126-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ultraviolet (UV) spectroscopy and photometry of four Type Ia supernovae (SNe 2004dt, 2004ef, 2005M, and 2005cf) obtained with the UV prism of the Advanced Camera for Surveys on the Hubble Space Telescope. This data set provides unique spectral time series down to 2000 angstrom. Significant diversity is seen in the near-maximum-light spectra (similar to 2000-3500 angstrom) for this small sample. The corresponding photometric data, together with archival data from Swift Ultraviolet/Optical Telescope observations, provide further evidence of increased dispersion in the UV emission with respect to the optical. The peak luminositiesmeasured in the uvw1/F250W filter are found to correlate with the B-band light-curve shape parameter Delta m(15)(B), but with much larger scatter relative to the correlation in the broadband B band (e.g., similar to 0.4 mag versus similar to 0.2 mag for those with 0.8 mag < Delta m(15)(B) < 1.7 mag). SN 2004dt is found as an outlier of this correlation (at > 3 sigma), being brighter than normal SNe Ia such as SN 2005cf by similar to 0.9 mag and similar to 2.0 mag in the uvw1/F250W and uvm2/F220W filters, respectively. We show that different progenitor metallicity or line-expansion velocities alone cannot explain such a large discrepancy. Viewing-angle effects, such as due to an asymmetric explosion, may have a significant influence on the flux emitted in the UV region. Detailed modeling is needed to disentangle and quantify the above effects.
  •  
2.
  • Clocchiatti, Alejandro, et al. (författare)
  • Late-time HST photometry of SN1994I : Hints of positron annihilation energy deposition
  • 2008
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 120:865, s. 290-300
  • Tidskriftsartikel (refereegranskat)abstract
    • We present multicolor Hubble Space Telescope ( HST) WFPC2 broadband observations of the Type Ic SN 1994I obtained similar to 280 d after maximum light. We measure the brightness of the SN and, relying on the detailed spectroscopic database of SN 1994I, we transform the ground-based photometry obtained at early times to the HST photometric system, deriving light curves for the WFPC2 F439W, F555W, F675W, and F814W passbands that extend from 7 days before to 280 days after maximum. We use the multicolor photometry to build a quasi-bolometric light curve of SN 1994I, and compare it with similarly constructed light curves of other supernovae. In doing so, we propose and test a scaling in energy and time that allows for a more meaningful comparison of the exponential tails of different events. Through comparison with models, we find that the late-time light curve of SN 1994I is consistent with that of spherically symmetric ejecta in homologous expansion, for which the ability to trap the gamma-rays produced by the radioactive decay of Co-56 diminishes roughly as the inverse of time squared. We also find that by the time of the HST photometry, the light curve was significantly energized by the annihilation of positrons.
  •  
3.
  • DerKacy, J. M., et al. (författare)
  • SN 2021fxy : mid-ultraviolet flux suppression is a common feature of Type Ia supernovae
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - 0035-8711 .- 1365-2966. ; 522:3, s. 3481-3505
  • Tidskriftsartikel (refereegranskat)abstract
    • We present ultraviolet (UV) to near-infrared (NIR) observations and analysis of the nearby Type Ia supernova SN 2021fxy. Our observations include UV photometry from Swift/UVOT, UV spectroscopy from HST/STIS, and high-cadence optical photometry with the Swope 1-m telescope capturing intranight rises during the early light curve. Early B - V colours show SN 2021fxy is the first 'shallow-silicon' (SS) SN Ia to follow a red-to-blue evolution, compared to other SS objects which show blue colours from the earliest observations. Comparisons to other spectroscopically normal SNe Ia with HST UV spectra reveal SN 2021fxy is one of several SNe Ia with flux suppression in the mid-UV. These SNe also show blueshifted mid-UV spectral features and strong high-velocity Ca ii features. One possible origin of this mid-UV suppression is the increased effective opacity in the UV due to increased line blanketing from high velocity material, but differences in the explosion mechanism cannot be ruled out. Among SNe Ia with mid-UV suppression, SNe 2021fxy and 2017erp show substantial similarities in their optical properties despite belonging to different Branch subgroups, and UV flux differences of the same order as those found between SNe 2011fe and 2011by. Differential comparisons to multiple sets of synthetic SN Ia UV spectra reveal this UV flux difference likely originates from a luminosity difference between SNe 2021fxy and 2017erp, and not differing progenitor metallicities as suggested for SNe 2011by and 2011fe. These comparisons illustrate the complicated nature of UV spectral formation, and the need for more UV spectra to determine the physical source of SNe Ia UV diversity.
  •  
4.
  • Hoeflich, Peter, et al. (författare)
  • The core normal Type Ia supernova 2019np – an overall spherical explosion with an aspherical surface layer and an aspherical 56Ni core 
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 520:1, s. 560-582
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical spectropolarimetry of the normal thermonuclear supernova (SN) 2019np from −14.5 to +14.5 d relative to B-band maximum detected an intrinsic continuum polarization (pcont) of 0.21 ± 0.09 per cent at the first epoch. Between days −11.5 and  +0.5, pcont remained ∼0 and by day +14.5 was again significant at 0.19 ± 0.10 per cent. Not considering the first epoch, the dominant axis of SiII λ6355 was roughly constant staying close the continuum until both rotated in opposite directions on day  +14.5. Detailed radiation-hydrodynamical simulations produce a very steep density slope in the outermost ejecta so that the low first-epoch pcont ≈ 0.2 per cent nevertheless suggests a separate structure with an axis ratio ∼2 in the outer carbon-rich (3.5–4) × 10−3 M⊙. Large-amplitude fluctuations in the polarization profiles and a flocculent appearance of the polar diagram for the CaII near-infrared triplet (NIR3) may be related by a common origin. The temporal evolution of the polarization spectra agrees with an off-centre delayed detonation. The late-time increase in polarization and the possible change in position angle are also consistent with an aspherical 56Ni core. The pcont and the absorptions due to SiII λ6355 and CaII NIR3 form in the same region of the extended photosphere, with an interplay between line occultation and thermalization producing p. Small-scale polarization features may be due to small-scale structures, but many could be related to atomic patterns of the quasi-continuum; they hardly have an equivalent in the total-flux spectra. We compare SN 2019np to other SNe and develop future objectives and strategies for SN Ia spectropolarimetry.
  •  
5.
  • Meikle, W. P. S., et al. (författare)
  • Dust and the type II-Plateau supernova 2004dj
  • 2011
  • Ingår i: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 732:2, s. 109-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present mid-infrared (MIR) spectroscopy of a Type II-plateau supernova, SN 2004dj, obtained with the Spitzer Space Telescope, spanning 106-1393 days after explosion. MIR photometry plus optical/near-IR observations are also reported. An early-time MIR excess is attributed to emission from non-silicate dust formed within a cool dense shell (CDS). Most of the CDS dust condensed between 50 days and 165 days, reaching a mass of 0.3 x 10(-5) M(circle dot). Throughout the observations, much of the longer wavelength (> 10 mu m) part of the continuum is explained as an IR echo from interstellar dust. The MIR excess strengthened at later times. We show that this was due to thermal emission from warm, non-silicate dust formed in the ejecta. Using optical/near-IR line profiles and the MIR continua, we show that the dust was distributed as a disk whose radius appeared to be shrinking slowly. The disk radius may correspond to a grain destruction zone caused by a reverse shock which also heated the dust. The dust-disk lay nearly face-on, had high opacities in the optical/near-IR regions, but remained optically thin in the MIR over much of the period studied. Assuming a uniform dust density, the ejecta dust mass by 996 days was (0.5 +/- 0.1) x 10(-4) M(circle dot) and exceeded 10(-4) M(circle dot) by 1393 days. For a dust density rising toward the center the limit is higher. Nevertheless, this study suggests that the amount of freshly synthesized dust in the SN 2004dj ejecta is consistent with that found from previous studies and adds further weight to the claim that such events could not have been major contributors to the cosmic dust budget.
  •  
6.
  • Perley, Daniel A., et al. (författare)
  • The Type Icn SN 2021csp : Implications for the Origins of the Fastest Supernovae and the Fates of Wolf-Rayet Stars
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 927:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present observations of SN 2021csp, the second example of a newly identified type of supernova (SN) hallmarked by strong, narrow, P Cygni carbon features at early times (Type Icn). The SN appears as a fast and luminous blue transient at early times, reaching a peak absolute magnitude of −20 within 3 days due to strong interaction between fast SN ejecta (v ≈ 30,000 km s−1) and a massive, dense, fast-moving C/O wind shed by the WC-like progenitor months before explosion. The narrow-line features disappear from the spectrum 10–20 days after explosion and are replaced by a blue continuum dominated by broad Fe features, reminiscent of Type Ibn and IIn supernovae and indicative of weaker interaction with more extended H/He-poor material. The transient then abruptly fades ∼60 days post-explosion when interaction ceases. Deep limits at later phases suggest minimal heavy-element nucleosynthesis, a low ejecta mass, or both, and imply an origin distinct from that of classical Type Ic SNe. We place SN 2021csp in context with other fast-evolving interacting transients, and discuss various progenitor scenarios: an ultrastripped progenitor star, a pulsational pair-instability eruption, or a jet-driven fallback SN from a Wolf–Rayet (W-R) star. The fallback scenario would naturally explain the similarity between these events and radio-loud fast transients, and suggests a picture in which most stars massive enough to undergo a W-R phase collapse directly to black holes at the end of their lives.
  •  
7.
  • Phillips, M. M., et al. (författare)
  • Carnegie Supernova Project-II : Extending the Near-infrared Hubble Diagram for Type Ia Supernovae to z ∼ 0.1
  • 2019
  • Ingår i: Publications of the Astronomical Society of the Pacific. - : IOP Publishing. - 0004-6280 .- 1538-3873. ; 131:995
  • Tidskriftsartikel (refereegranskat)abstract
    • The Carnegie Supernova Project-II (CSP-II) was an NSF-funded, four-year program to obtain optical and near-infrared observations of a Cosmology sample of similar to 100 Type. Ia supernovae located in the smooth Hubble flow (0.03 less than or similar to z less than or similar to 0.10). Light curves were also obtained of a Physics sample composed of 90 nearby Type. Ia supernovae at z <= 0.04 selected for near-infrared spectroscopic timeseries observations. The primary emphasis of the CSP-II is to use the combination of optical and near-infrared photometry to achieve a distance precision of better than 5%. In this paper, details of the supernova sample, the observational strategy, and the characteristics of the photometric data are provided. In a companion paper, the near-infrared spectroscopy component of the project is presented.
  •  
8.
  • Yang (杨轶), Yi, et al. (författare)
  • The interaction of supernova 2018evt with a substantial amount of circumstellar matter – An SN 1997cy-like event
  • 2023
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 519:2, s. 1618-1647
  • Tidskriftsartikel (refereegranskat)abstract
    • A rare class of supernovae (SNe) is characterized by strong interaction between the ejecta and several solar masses of circumstellar matter (CSM) as evidenced by strong Balmer-line emission. Within the first few weeks after the explosion, they may display spectral features similar to overluminous Type Ia SNe, while at later phase their observation properties exhibit remarkable similarities with some extreme case of Type IIn SNe that show strong Balmer lines years after the explosion. We present polarimetric observations of SN 2018evt obtained by the ESO Very Large Telescope from 172 to 219 d after the estimated time of peak luminosity to study the geometry of the CSM. The non-zero continuum polarization decreases over time, suggesting that the mass-loss of the progenitor star is aspherical. The prominent H α emission can be decomposed into a broad, time-evolving component and an intermediate-width, static component. The former shows polarized signals, and it is likely to arise from a cold dense shell (CDS) within the region between the forward and reverse shocks. The latter is significantly unpolarized, and it is likely to arise from shocked, fragmented gas clouds in the H-rich CSM. We infer that SN 2018evt exploded inside a massive and aspherical circumstellar cloud. The symmetry axes of the CSM and the SN appear to be similar. SN 2018evt shows observational properties common to events that display strong interaction between the ejecta and CSM, implying that they share similar circumstellar configurations. Our preliminary estimate also suggests that the circumstellar environment of SN 2018evt has been significantly enriched at a rate of ∼0.1 M⊙ yr−1 over a period of >100 yr. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy