SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hofstra Robert) "

Sökning: WFRF:(Hofstra Robert)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Thompson, B.A., et al. (författare)
  • Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database
  • 2014
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 46:2, s. 107-115
  • Tidskriftsartikel (refereegranskat)abstract
    • The clinical classification of hereditary sequence variants identified in disease-related genes directly affects clinical management of patients and their relatives. The International Society for Gastrointestinal Hereditary Tumours (InSiGHT) undertook a collaborative effort to develop, test and apply a standardized classification scheme to constitutional variants in the Lynch syndrome-associated genes MLH1, MSH2, MSH6 and PMS2. Unpublished data submission was encouraged to assist in variant classification and was recognized through microattribution. The scheme was refined by multidisciplinary expert committee review of the clinical and functional data available for variants, applied to 2,360 sequence alterations, and disseminated online. Assessment using validated criteria altered classifications for 66% of 12,006 database entries. Clinical recommendations based on transparent evaluation are now possible for 1,370 variants that were not obviously protein truncating from nomenclature. This large-scale endeavor will facilitate the consistent management of families suspected to have Lynch syndrome and demonstrates the value of multidisciplinary collaboration in the curation and classification of variants in public locus-specific databases. © 2014 Nature America, Inc.
  •  
2.
  • Enciso-Mora, Victor, et al. (författare)
  • A genome-wide association study of Hodgkin's lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21 and 10p14 (GATA3)
  • 2010
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1546-1718 .- 1061-4036. ; 42:12, s. 1126-1126
  • Tidskriftsartikel (övrigt vetenskapligt)abstract
    • To identify susceptibility loci for classical Hodgkin's lymphoma (cHL), we conducted a genome-wide association study of 589 individuals with cHL (cases) and 5,199 controls with validation in four independent samples totaling 2,057 cases and 3,416 controls. We identified three new susceptibility loci at 2p16.1 (rs1432295, REL, odds ratio (OR) = 1.22, combined P = 1.91 x 10(-8)), 8q24.21 (rs2019960, PVT1, OR = 1.33, combined P = 1.26 x 10(-13)) and 10p14 (rs501764, GATA3, OR = 1.25, combined P = 7.05 x 10(-8)). Furthermore, we confirmed the role of the major histocompatibility complex in disease etiology by revealing a strong human leukocyte antigen (HLA) association (rs6903608, OR = 1.70, combined P = 2.84 x 10(-50)). These data provide new insight into the pathogenesis of cHL.
  •  
3.
  • Christaller, Wilhelm A A, et al. (författare)
  • L1 syndrome diagnosis complemented with functional analysis of L1CAM variants located to the two N-terminal Ig-like domains.
  • 2016
  • Ingår i: Clinical Genetics. - : Wiley-Blackwell. - 0009-9163.
  • Tidskriftsartikel (refereegranskat)abstract
    • L1CAM gene mutations cause neurodevelopmental disorders collectively termed L1 syndrome. Insufficient information about L1CAM variants complicates clinical prognosis, genetic diagnosis and genetic counseling. We combined clinical data, in silico effect predictions and functional analysis of four L1CAM variants, p.I37N, p.D202Y, p.M172I and p.T38M, located to the two N-terminal Ig-like domains present in five families with symptoms of L1 syndrome. Software tools predicted destabilizing effects of p.I37N and p.D202Y but results for p.T38M and p.M172I were inconsistent. Cell surface expression of mutant proteins L1-T38M, L1-M172I and L1-D202Y was normal. Conversely, L1-I37N accumulated in the endoplasmic reticulum and showed temperature-sensitive protein maturation suggesting that p.I37N induces protein misfolding. L1CAM-mediated cell-cell aggregation was severely impaired by L1CAM variants p.I37N, p.M172I and p.D202Y but was preserved by the variant p.T38M. Our experimental data indicate that protein misfolding and accumulation in the endoplasmic reticulum affect function of the L1CAM variant p.I37N whereas the variants p.M172I and p.D202Y impair homophilic interaction at the cell surface.
  •  
4.
  • Halim, Danny, et al. (författare)
  • ACTG2 variants impair actin polymerization in sporadic Megacystis Microcolon Intestinal Hypoperistalsis Syndrome
  • 2016
  • Ingår i: Human Molecular Genetics. - 0964-6906 .- 1460-2083. ; 25:3, s. 571-583
  • Tidskriftsartikel (refereegranskat)abstract
    • Megacystis Microcolon Intestinal Hypoperistalsis Syndrome (MMIHS) is a rare congenital disorder, in which heterozygous missense variants in the Enteric Smooth Muscle actin gamma-2 (ACTG2) gene have been recently identified. To investigate the mechanism by which ACTG2 variants lead to MMIHS, we screened a cohort of eleven MMIHS patients, eight sporadic and three familial cases, and performed immunohistochemistry, molecular modeling and molecular dynamics (MD) simulations, and in vitro assays. In all sporadic cases, a heterozygous missense variant in ACTG2 was identified. ACTG2 expression was detected in all intestinal layers where smooth muscle cells are present in different stages of human development. No histopathological abnormalities were found in the patients. Using molecular modeling and MD simulations, we predicted that ACTG2 variants lead to significant changes to the protein function. This was confirmed by in vitro studies, which showed that the identified variants not only impair ACTG2 polymerization, but also contribute to reduced cell contractility. Taken together, our results confirm the involvement of ACTG2 in sporadic MMIHS, and bring new insights to MMIHS pathogenesis.
  •  
5.
  • Plaza-Menacho, Iván, et al. (författare)
  • Ras/ERK1/2-mediated STAT3 Ser727 phosphorylation by familial medullary thyroid carcinoma-associated RET mutants induces full activation of STAT3 and is required for c-fos promoter activation, cell mitogenicity, and transformation.
  • 2007
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 282:9, s. 6415-24
  • Tidskriftsartikel (refereegranskat)abstract
    • The precise role of STAT3 Ser(727) phosphorylation in RET-mediated cell transformation and oncogenesis is not well understood. In this study, we have shown that familial medullary thyroid carcinoma (FMTC) mutants RET(Y791F) and RET(S891A) induced, in addition to Tyr(705) phosphorylation, constitutive STAT3 Ser(727) phosphorylation. Using inhibitors and dominant negative constructs, we have demonstrated that RET(Y791F) and RET(S891A) induce STAT3 Ser(727) phosphorylation via a canonical Ras/ERK1/2 pathway and that integration of the Ras/ERK1/2/ELK-1 and STAT3 pathways was required for up-regulation of the c-fos promoter by FMTC-RET. Moreover, inhibition of ERK1/2 had a more severe effect on cell proliferation and cell phenotype in HEK293 cells expressing RET(S891A) compared with control and RET(WT)-transfected cells. The transforming activity of RET(Y791F) and RET(S891A) in NIH-3T3 cells was also inhibited by U0126, indicating a role of the ERK1/2 pathway in RET-mediated transformation. To investigate the biological significance of Ras/ERK1/2-induced STAT3 Ser(727) phosphorylation for cell proliferation and transformation, N-Ras-transformed NIH-3T3 cells were employed. These cells displayed elevated levels of activated ERK1/2 and Ser(727)-phosphorylated STAT3, which were inhibited by treatment with U0126. Importantly, overexpression of STAT3, in which the Ser(727) was mutated into Ala (STAT3(S727A)), rescued the transformed phenotype of N-Ras-transformed cells. Immunohistochemistry in tumor samples from FMTC patients showed strong nuclear staining of phosphorylated ERK1/2 and Ser(727) STAT3. These data show that FMTC-RET mutants activate a Ras/ERK1/2/STAT3 Ser(727) pathway, which plays an important role in cell mitogenicity and transformation.
  •  
6.
  • Plaza Menacho, Ivan, et al. (författare)
  • RET-familial medullary thyroid carcinoma mutants Y791F and S891A activate a Src/JAK/STAT3 pathway, independent of glial cell line-derived neurotrophic factor
  • 2005
  • Ingår i: Cancer Research. - : American Association for Cancer Research. - 0008-5472 .- 1538-7445. ; 65:5, s. 1729-1737
  • Tidskriftsartikel (refereegranskat)abstract
    • The RET proto-oncogene encodes a receptor tyrosine kinase whose dysfunction plays a crucial role in the development of several neural crest disorders. Distinct activating RET mutations cause multiple endocrine neoplasia type 2A (MEN2A), type 2B (MEN2B), and familial medullary thyroid carcinoma (FMTC). Despite clear correlations between the mutations found in these cancer syndromes and their phenotypes, the molecular mechanisms connecting the mutated receptor to the different disease phenotypes are far from completely understood. Luciferase reporter assays in combination with immunoprecipitations, and Western and immunohistochemistry analyses were done in order to characterize the signaling properties of two FMTC-associated RET mutations, Y791F and S891A, respectively, both affecting the tyrosine kinase domain of the receptor. We show that these RET-FMTC mutants are monomeric receptors which are autophosphorylated and activated independently of glial cell line-derived neurotrophic factor. Moreover, we show that the dysfunctional signaling properties of these mutants, when compared with wild-type RET, involve constitutive activation of signal transducers and activators of transcription 3 (STAT3). Furthermore, we show that STAT3 activation is mediated by a signaling pathway involving Src, JAK1, and JAK2, differing from STAT3 activation promoted by RET(C634R) which was previously found to be independent of Src and JAKs. Three-dimensional modeling of the RET catalytic domain suggested that the structural changes promoted by the respective amino acids substitutions lead to a more accessible substrate and ATP-binding monomeric conformation. Finally, immunohistochemical analysis of FMTC tumor samples support the in vitro data, because nuclear localized, Y705-phosphorylated STAT3, as well as a high degree of RET expression at the plasma membrane was observed.
  •  
7.
  • Timofeeva, Maria N, et al. (författare)
  • Recurrent Coding Sequence Variation Explains Only A Small Fraction of the Genetic Architecture of Colorectal Cancer.
  • 2015
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 5
  • Tidskriftsartikel (refereegranskat)abstract
    • Whilst common genetic variation in many non-coding genomic regulatory regions are known to impart risk of colorectal cancer (CRC), much of the heritability of CRC remains unexplained. To examine the role of recurrent coding sequence variation in CRC aetiology, we genotyped 12,638 CRCs cases and 29,045 controls from six European populations. Single-variant analysis identified a coding variant (rs3184504) in SH2B3 (12q24) associated with CRC risk (OR = 1.08, P = 3.9 × 10(-7)), and novel damaging coding variants in 3 genes previously tagged by GWAS efforts; rs16888728 (8q24) in UTP23 (OR = 1.15, P = 1.4 × 10(-7)); rs6580742 and rs12303082 (12q13) in FAM186A (OR = 1.11, P = 1.2 × 10(-7) and OR = 1.09, P = 7.4 × 10(-8)); rs1129406 (12q13) in ATF1 (OR = 1.11, P = 8.3 × 10(-9)), all reaching exome-wide significance levels. Gene based tests identified associations between CRC and PCDHGA genes (P < 2.90 × 10(-6)). We found an excess of rare, damaging variants in base-excision (P = 2.4 × 10(-4)) and DNA mismatch repair genes (P = 6.1 × 10(-4)) consistent with a recessive mode of inheritance. This study comprehensively explores the contribution of coding sequence variation to CRC risk, identifying associations with coding variation in 4 genes and PCDHG gene cluster and several candidate recessive alleles. However, these findings suggest that recurrent, low-frequency coding variants account for a minority of the unexplained heritability of CRC.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy