SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hokfelt T) ;pers:(Alpar A)"

Sökning: WFRF:(Hokfelt T) > Alpar A

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Gaati, G, et al. (författare)
  • Revival of calcium-binding proteins for neuromorphology: secretagogin typifies distinct cell populations in the avian brain
  • 2014
  • Ingår i: Brain, behavior and evolution. - : S. Karger AG. - 1421-9743 .- 0006-8977. ; 83:2, s. 82-92
  • Tidskriftsartikel (refereegranskat)abstract
    • In the vertebrate nervous system, the Ca<sup>2+</sup>-binding proteins parvalbumin, calbindin and calretinin have been extensively used to elaborate the molecular diversity of neuronal subtypes. Secretagogin is a phylogenetically conserved Ca<sup>2+</sup>-binding protein, which marks neuronal populations largely distinct from other Ca<sup>2+</sup>-binding proteins in mammals. Whether secretagogin is expressed in nonmammalian vertebrates, particularly in birds, and, if so, with a brain cytoarchitectonic design different from that of mammals is unknown. Here, we show that secretagogin is already present in the hatchlings' brain with continued presence into adulthood. Secretagogin-immunoreactive neurons primarily accumulate in the olfactory bulb, septum, subpallial amygdala, hippocampus, hypothalamus, habenular nuclei and deep layers of the optic tectum of adult domestic chicks <i>(Gallus domesticus)</i>. In the olfactory bulb, secretagogin labels periglomerular neurons as well as a cell continuum ascending dorsomedially, reaching the ventricular wall. Between the hippocampus and septal nuclei, the interconnecting thin septal tissue harbors secretagogin-immunoreactive neurons that contact the ventricular wall with their ramifying dendritic processes. Secretagogin is also present in the neuroendocrine hypothalamus, with particularly rich neuronal clusters seen in its suprachiasmatic and infundibular nuclei. Secretagogin expression identified a hitherto undescribed cell contingent along intratelencephalic cell-free laminae separating brain regions or marking the palliosubpallial boundary, as well as a dense neuronal population in the area corticoidea lateralis. In both the telencephalon and midbrain, secretagogin complemented the distribution of the canonical ‘neuronal' Ca<sup>2+</sup>-binding proteins. Our findings identify novel neuronal subtypes, connectivity patterns in brain areas functionally relevant to olfaction, orientation, behavior as well as endocrine functions, which will help refine existing concepts on the neuronal diversity and organizational principles of the avian brain.
  •  
4.
  • Korchynska, S, et al. (författare)
  • A hypothalamic dopamine locus for psychostimulant-induced hyperlocomotion in mice
  • 2022
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 13:1, s. 5944-
  • Tidskriftsartikel (refereegranskat)abstract
    • The lateral septum (LS) has been implicated in the regulation of locomotion. Nevertheless, the neurons synchronizing LS activity with the brain’s clock in the suprachiasmatic nucleus (SCN) remain unknown. By interrogating the molecular, anatomical and physiological heterogeneity of dopamine neurons of the periventricular nucleus (PeVN; A14 catecholaminergic group), we find that Th+/Dat1+ cells from its anterior subdivision innervate the LS in mice. These dopamine neurons receive dense neuropeptidergic innervation from the SCN. Reciprocal viral tracing in combination with optogenetic stimulation ex vivo identified somatostatin-containing neurons in the LS as preferred synaptic targets of extrahypothalamic A14 efferents. In vivo chemogenetic manipulation of anterior A14 neurons impacted locomotion. Moreover, chemogenetic inhibition of dopamine output from the anterior PeVN normalized amphetamine-induced hyperlocomotion, particularly during sedentary periods. Cumulatively, our findings identify a hypothalamic locus for the diurnal control of locomotion and pinpoint a midbrain-independent cellular target of psychostimulants.
  •  
5.
  •  
6.
  • Romanov, RA, et al. (författare)
  • Unified Classification of Molecular, Network, and Endocrine Features of Hypothalamic Neurons
  • 2019
  • Ingår i: Annual review of neuroscience. - : Annual Reviews. - 1545-4126 .- 0147-006X. ; 42, s. 1-26
  • Tidskriftsartikel (refereegranskat)abstract
    • Peripheral endocrine output relies on either direct or feed-forward multi-order command from the hypothalamus. Efficient coding of endocrine responses is made possible by the many neuronal cell types that coexist in intercalated hypothalamic nuclei and communicate through extensive synaptic connectivity. Although general anatomical and neurochemical features of hypothalamic neurons were described during the past decades, they have yet to be reconciled with recently discovered molecular classifiers and neurogenetic function determination. By interrogating magnocellular as well as parvocellular dopamine, GABA, glutamate, and phenotypically mixed neurons, we integrate available information at the molecular, cellular, network, and endocrine output levels to propose a framework for the comprehensive classification of hypothalamic neurons. Simultaneously, we single out putative neuronal subclasses for which future research can fill in existing gaps of knowledge to rationalize cellular diversity through function-determinant molecular marks in the hypothalamus.
  •  
7.
  •  
8.
  •  
9.
  • Patthy, A, et al. (författare)
  • Neuropathology of the Brainstem to Mechanistically Understand and to Treat Alzheimer's Disease
  • 2021
  • Ingår i: Journal of clinical medicine. - : MDPI AG. - 2077-0383. ; 10:8
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy