SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Hollander Anneke I.) "

Search: WFRF:(Hollander Anneke I.)

  • Result 1-10 of 12
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Turcot, Valerie, et al. (author)
  • Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity
  • 2018
  • In: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 50:1, s. 26-41
  • Journal article (peer-reviewed)abstract
    • Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are similar to 10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed similar to 7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.
  •  
2.
  • Marouli, Eirini, et al. (author)
  • Rare and low-frequency coding variants alter human adult height
  • 2017
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 542:7640, s. 186-190
  • Journal article (peer-reviewed)abstract
    • Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
  •  
3.
  • Kanoni, Stavroula, et al. (author)
  • Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis.
  • 2022
  • In: Genome biology. - : Springer Science and Business Media LLC. - 1474-760X .- 1465-6906 .- 1474-7596. ; 23:1
  • Journal article (peer-reviewed)abstract
    • Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery.To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3-5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism.Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.
  •  
4.
  • Borné, Yan, et al. (author)
  • Complement C3 Associates With Incidence of Diabetes, but No Evidence of a Causal Relationship
  • 2017
  • In: The Journal of clinical endocrinology and metabolism. - : The Endocrine Society. - 1945-7197 .- 0021-972X. ; 102:12, s. 4477-4485
  • Journal article (peer-reviewed)abstract
    • Purpose: This study explored whether complement factor 3 (C3) in plasma is associated with incidence of diabetes in a population-based cohort. We also identified genetic variants related to C3 and explored whether C3 and diabetes share common genetic determinants.Methods: C3 was analyzed in plasma from 4368 nondiabetic subjects, 46 to 68 years old, from the Malmö Diet and Cancer Study. Incidence of diabetes was studied in relationship to C3 levels during 17.7± 4.4 years of follow-up. Genotypes associated with C3 were identified in a genome-wide association study. Diabetes Genetics Replication and Meta-Analysis and the European Genetic Database were used for in silico look-up.Results: In all, 538 (12.3%) subjects developed diabetes during 18 years of follow-up. High C3 was significantly associated with incidence of diabetes after risk factor adjustments (hazard ratio comparing 4th vs 1st quartile, 1.54 (95% confidence interval, 1.13 to 2.09; P = 0.005). C3 was associated with polymorphisms at the complement factor H locus (P < 10-8). However, no relationship with diabetes was observed for this locus. Another eight loci were associated with C3 with P < 10-5. One of them, the glucose kinase regulatory protein (GCKR) locus, has been previously associated with diabetes. The relationship between C3 levels and the GCKR locus was replicated in the European Genetic Database cohort.Conclusions: Plasma concentration of C3 is a risk marker for incidence of diabetes. The results suggest that this association could, in part, be explained by pleiotropic effects related to the GCKR gene.
  •  
5.
  • de Jong, Sarah, et al. (author)
  • Effect of rare coding variants in the CFI gene on Factor I expression levels
  • 2020
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 29:14, s. 2313-2324
  • Journal article (peer-reviewed)abstract
    • Factor I (FI) is one of the main inhibitors of complement activity, and numerous rare coding variants have been reported in patients with age-related macular degeneration, atypical hemolytic uremic syndrome and C3 glomerulopathy. Since many of these variants are of unknown clinical significance, this study aimed to determine the effect of rare coding variants in the complement factor I (CFI) gene on FI expression. We measured FI levels in plasma samples of carriers of rare coding variants and in vitro in the supernatants of epithelial cells expressing recombinant FI. FI levels were measured in 177 plasma samples of 155 individuals, carrying 24 different rare coding variants in CFI. In carriers of the variants p.Gly119Arg, p.Leu131Arg, p.Gly188Ala and c.772G>A (r.685_773del), significantly reduced FI plasma levels were detected. Furthermore, recombinant FI expression levels were determined for 126 rare coding variants. Of these variants 68 (54%) resulted in significantly reduced FI expression in supernatant compared to wildtype (WT). The recombinant protein expression levels correlated significantly with the FI level in plasma of carriers of CFI variants. In this study, we performed the most comprehensive FI expression level analysis of rare coding variants in CFI to date. More than half of CFI variants lead to reduced FI expression, which might impair complement regulation in vivo. Our study will aid the interpretation of rare coding CFI variants identified in clinical practice, which is in particular important in light of patient inclusion in ongoing clinical trials for CFI gene supplementation in AMD.
  •  
6.
  • de Jong, Sarah, et al. (author)
  • Functional Analysis of Variants in Complement Factor I Identified in Age-Related Macular Degeneration and Atypical Hemolytic Uremic Syndrome
  • 2022
  • In: Frontiers in Immunology. - : Frontiers Media SA. - 1664-3224. ; 12
  • Journal article (peer-reviewed)abstract
    • Complement factor I (FI) is a central inhibitor of the complement system, and impaired FI function increases complement activation, contributing to diseases such as age-related macular degeneration (AMD) and atypical hemolytic uremic syndrome (aHUS). Genetic variation in complement factor I (CFI) has been identified in both AMD and aHUS, with more than half of these variants leading to reduced FI secretion levels. For many of the variants with normal FI secretion, however, functional implications are not yet known. Here we studied 11 rare missense variants, with FI secretion levels comparable to wildtype, but a predicted damaging effects based on the Combined Annotation Dependent Depletion (CADD) score. Three variants (p.Pro50Ala, p.Arg339Gln, and p.Ser570Thr) were analyzed in plasma and serum samples of carriers affected by AMD. All 11 variants (nine for the first time in this study) were recombinantly expressed and the ability to degrade C3b was studied with the C3b degradation assay. The amount of degradation was determined by measuring the degradation product iC3b with ELISA. Eight of 11 (73%) mutant proteins (p.Pro50Ala, p.Arg339Gln, p.Ile340Thr, p.Gly342Glu, p.Gly349Arg, p.Arg474Gln, p.Gly487Cys, and p.Gly512Ser) showed significantly impaired C3b degradation, and were therefore classified as likely pathogenic. Our data indicate that genetic variants in CFI with a CADD score >20 are likely to affect FI function, and that monitoring iC3b in a degradation assay is a useful tool to establish the pathogenicity of CFI variants in functional studies.
  •  
7.
  • Geerlings, Maartje J., et al. (author)
  • The functional effect of rare variants in complement genes on C3b degradation in patients with age-related macular degeneration
  • 2017
  • In: JAMA Ophthalmology. - : American Medical Association (AMA). - 2168-6165. ; 135:1, s. 39-46
  • Journal article (peer-reviewed)abstract
    • IMPORTANCE In age-related macular degeneration (AMD), rare variants in the complement system have been described, but their functional consequences remain largely unexplored. OBJECTIVES To identify new rare variants in complement genes and determine the functional effect of identified variants on complement levels and complement regulation in serum samples from carriers and noncarriers. DESIGN, SETTING, AND PARTICIPANTS This study evaluated affected (n = 114) and unaffected (n = 60) members of 22 families with AMD and a case-control cohort consisting of 1831 unrelated patients with AMD and 1367 control individuals from the European Genetic Database from March 29, 2006, to April 26, 2013, in Nijmegen, the Netherlands, and Cologne, Germany. Exome sequencing data of families were filtered for rare variants in the complement factor H (CFH), complement factor I (CFI), complement C9 (C9), and complement C3 (C3) genes. The case-control cohort was genotyped with allele-specific assays. Serum samples were obtained from carriers of identified variants (n = 177) and age-matched noncarriers (n = 157). Serum concentrations of factor H (FH), factor I (FI), C9, and C3 were measured, and C3b degradation ability was determined. MAIN OUTCOMES AND MEASURES Association of rare variants in the CFH, CFI, C9, and C3 genes with AMD, serum levels of corresponding proteins, and C3b degradation ability of CFH and CFI variant carriers. RESULTS The 1831 unrelated patients with AMD had a mean (SD) age of 75.0 (9.4) years, and 60.5%were female. The 1367 unrelated control participants had a mean (SD) age of 70.4 (7.0), and 58.7%were female. All individuals were of European descent. Rare variants in CFH, CFI, C9, and C3 contributed to an increased risk of developing AMD (odds ratio, 2.04; 95%CI, 1.47-2.82; P < .001). CFI carriers had decreased median FI serum levels (18.2 μg/mL in Gly119Arg carriers and 16.2 μg/mL in Leu131Arg carriers vs 27.2 and 30.4 μg/mL in noncarrier cases and controls, respectively; both P < .001). Elevated C9 levels were observed in Pro167Ser carriers (10.7 μg/mL vs 6.6 and 6.1 μg/mL in noncarrier cases and controls, respectively; P < .001). The median FH serum levels were 299.4 μg/mL for CFH Arg175Gln and 266.3 μg/mL for CFH Ser193Leu carriers vs 302.4 and 283.0 μg/mL for noncarrier cases and controls, respectively. The median C3 serum levels were 943.2 μg/mL for C3 Arg161Trp and 946.7 μg/mL for C3 Lys155Gln carriers vs 874.0 and 946.7 μg/mL for noncarrier cases and controls, respectively. The FH and FI levels correlated with C3b degradation in noncarriers (R2 = 0.35 and R2 = 0.31, respectively; both P < .001). CONCLUSIONS AND RELEVANCE Reduced serum levels were associated with C3b degradation in carriers of CFI but not CFH variants, suggesting that CFH variants affect functional activity of FH rather than serum levels. Carriers of CFH (Arg175Gln and Ser193Leu) and CFI (Gly119Arg and Leu131Arg) variants have an impaired ability to regulate complement activation and may benefit more from complement-inhibiting therapy than patients with AMD in general.
  •  
8.
  • Kremlitzka, Mariann, et al. (author)
  • Functional analyses of rare genetic variants in complement component C9 identified in patients with age-related macular degeneration
  • 2018
  • In: Human Molecular Genetics. - : Oxford University Press (OUP). - 0964-6906 .- 1460-2083. ; 27:15, s. 2678-2688
  • Journal article (peer-reviewed)abstract
    • Age-related macular degeneration (AMD) is a progressive disease of the central retina and the leading cause of irreversible vision loss in the western world. The involvement of abnormal complement activation in AMD has been suggested by association of variants in genes encoding complement proteins with disease development. A low-frequency variant (p.P167S) in the complement component C9 (C9) gene was recently shown to be highly associated with AMD; however, its functional outcome remains largely unexplored. In this study, we reveal five novel rare genetic variants (p.M45L, p.F62S, p.G126R, p.T170I and p.A529T) in C9 in AMD patients, and evaluate their functional effects in vitro together with the previously identified (p.R118Wand p.P167S) C9 variants. Our results demonstrate that the concentration of C9 is significantly elevated in patients' sera carrying the p.M45L, p.F62S, p.P167S and p.A529T variants compared with non-carrier controls. However, no difference can be observed in soluble terminal complement complex levels between the carrier and non-carrier groups. Comparing the polymerization of the C9 variants we reveal that the p.P167S mutant spontaneously aggregates, while the other mutant proteins (except for C9 p.A529T) fail to polymerize in the presence of zinc. Altered polymerization of the p.F62S and p.P167S proteins associated with decreased lysis of sheep erythrocytes and adult retinal pigment epithelial-19 cells by carriers' sera. Our data suggest that the analyzed C9 variants affect only the secretion and polymerization of C9, without influencing its classical lytic activity. Future studies need to be performed to understand the implications of the altered polymerization of C9 in AMD pathology.
  •  
9.
  • Littink, Karin W., et al. (author)
  • Homozygosity Mapping in Patients with Cone-Rod Dystrophy : Novel Mutations and Clinical Characterizations
  • 2010
  • In: Investigative Ophthalmology and Visual Science. - : Association for Research in Vision and Ophthalmology (ARVO). - 0146-0404 .- 1552-5783. ; 51:11, s. 5943-5951
  • Journal article (peer-reviewed)abstract
    • PURPOSE. To determine the genetic defect and to describe the clinical characteristics in a cohort of mainly nonconsanguineous cone-rod dystrophy (CRD) patients. METHODS. One hundred thirty-nine patients with diagnosed CRD were recruited. Ninety of them were screened for known mutations in ABCA4, and those carrying one or two mutations were excluded from further research. Genome-wide homozygosity mapping was performed in the remaining 108. Known genes associated with autosomal recessive retinal dystrophies located within a homozygous region were screened for mutations. Patients in whom a mutation was detected underwent further ophthalmic examination. RESULTS. Homozygous sequence variants were identified in eight CRD families, six of which were nonconsanguineous. The variants were detected in the following six genes: ABCA4, CABP4, CERKL, EYS, KCNV2, and PROM1. Patients carrying mutations in ABCA4, CERKL, and PROM1 had typical CRD symptoms, but a variety of retinal appearances on funduscopy, optical coherence tomography, and autofluorescence imaging. CONCLUSIONS. Homozygosity mapping led to the identification of new mutations in consanguineous and nonconsanguineous patients with retinal dystrophy. Detailed clinical characterization revealed a variety of retinal appearances, ranging from nearly normal to extensive retinal remodeling, retinal thinning, and debris accumulation. Although CRD was initially diagnosed in all patients, the molecular findings led to a reappraisal of the diagnosis in patients carrying mutations in EYS, CABP4, and KCNV2.
  •  
10.
  • Mackay, Donna S, et al. (author)
  • Screening of a Large Cohort of Leber Congenital Amaurosis and Retinitis Pigmentosa Patients Identifies Novel LCA5 Mutations and New Genotype-Phenotype Correlations
  • 2013
  • In: Human Mutation. - : John Wiley & Sons. - 1059-7794 .- 1098-1004. ; 34:11, s. 1537-1546
  • Journal article (peer-reviewed)abstract
    • This study was undertaken to investigate the prevalence of sequence variants in LCA5 in patients with Leber congenital amaurosis (LCA), early-onset retinal dystrophy (EORD), and autosomal recessive retinitis pigmentosa (arRP); to delineate the ocular phenotypes; and to provide an overview of all published LCA5 variants in an online database. Patients underwent standard ophthalmic evaluations after providing informed consent. In selected patients, optical coherence tomography (OCT) and fundus autofluorescence imaging were possible. DNA samples from 797 unrelated patients with LCA and 211 with the various types of retinitis pigmentosa (RP) were screened by Sanger sequence analysis of all LCA5 exons and intron/exon junctions. Some LCA patients were prescreened by APEX technology or selected based on homozygosity mapping. In silico analyses were performed to assess the pathogenicity of the variants. Segregation analysis was performed where possible. Published and novel LCA5 variants were collected, amended for their correct nomenclature, and listed in a Leiden Open Variation Database (LOVD). Sequence analysis identified 18 new probands with 19 different LCA5 variants. Seventeen of the 19 LCA5 variants were novel. Except for two missense variants and one splice site variant, all variants were protein-truncating mutations. Most patients expressed a severe phenotype, typical of LCA. However, some LCA subjects had better vision and intact inner segment/outer segment (IS/OS) junctions on OCT imaging. In two families with LCA5 variants, the phenotype was more compatible with EORD with affected individuals displaying preserved islands of retinal pigment epithelium. One of the families with a milder phenotype harbored a homozygous splice site mutation; a second family was found to have a combination of a stop mutation and a missense mutation. This is the largest LCA5 study to date. We sequenced 1,008 patients (797 with LCA, 211 with arRP) and identified 18 probands with LCA5 mutations. Mutations in LCA5 are a rare cause of childhood retinal dystrophy accounting for ∼2% of disease in this cohort, and the majority of LCA5 mutations are likely null. The LCA5 protein truncating mutations are predominantly associated with LCA. However, in two families with the milder EORD, the LCA5 gene analysis revealed a homozygous splice site mutation in one and a stop mutation in combination with a missense mutation in a second family, suggesting that this milder phenotype is due to residual function of lebercilin and expanding the currently known phenotypic spectrum to include the milder early onset RP. Some patients have remaining foveal cone structures (intact IS/OS junctions on OCT imaging) and remaining visual acuities, which may bode well for upcoming treatment trials.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view