SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmen Oddgeir) "

Sökning: WFRF:(Holmen Oddgeir)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Crosby, Jacy, et al. (författare)
  • Loss-of-Function Mutations in APOC3, Triglycerides, and Coronary Disease
  • 2014
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 371:1, s. 22-31
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype. Methods We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons. Results An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G -> A and IVS3+1G -> T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1x10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P = 8x10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P = 4x10(-6)). Conclusions Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease. (Funded by the National Heart, Lung, and Blood Institute and others.)
  •  
2.
  • Gaulton, Kyle J, et al. (författare)
  • Genetic fine mapping and genomic annotation defines causal mechanisms at type 2 diabetes susceptibility loci.
  • 2015
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 47:12, s. 1415-1415
  • Tidskriftsartikel (refereegranskat)abstract
    • We performed fine mapping of 39 established type 2 diabetes (T2D) loci in 27,206 cases and 57,574 controls of European ancestry. We identified 49 distinct association signals at these loci, including five mapping in or near KCNQ1. 'Credible sets' of the variants most likely to drive each distinct signal mapped predominantly to noncoding sequence, implying that association with T2D is mediated through gene regulation. Credible set variants were enriched for overlap with FOXA2 chromatin immunoprecipitation binding sites in human islet and liver cells, including at MTNR1B, where fine mapping implicated rs10830963 as driving T2D association. We confirmed that the T2D risk allele for this SNP increases FOXA2-bound enhancer activity in islet- and liver-derived cells. We observed allele-specific differences in NEUROD1 binding in islet-derived cells, consistent with evidence that the T2D risk allele increases islet MTNR1B expression. Our study demonstrates how integration of genetic and genomic information can define molecular mechanisms through which variants underlying association signals exert their effects on disease.
  •  
3.
  • Gusarova, Viktoria, et al. (författare)
  • Genetic inactivation of ANGPTL4 improves glucose homeostasis and is associated with reduced risk of diabetes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9, s. 1-11
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiopoietin-like 4 (ANGPTL4) is an endogenous inhibitor of lipoprotein lipase that modulates lipid levels, coronary atherosclerosis risk, and nutrient partitioning. We hypothesize that loss of ANGPTL4 function might improve glucose homeostasis and decrease risk of type 2 diabetes (T2D). We investigate protein-altering variants in ANGPTL4 among 58,124 participants in the DiscovEHR human genetics study, with follow-up studies in 82,766 T2D cases and 498,761 controls. Carriers of p.E40K, a variant that abolishes ANGPTL4 ability to inhibit lipoprotein lipase, have lower odds of T2D (odds ratio 0.89, 95% confidence interval 0.85-0.92, p = 6.3 × 10-10), lower fasting glucose, and greater insulin sensitivity. Predicted loss-of-function variants are associated with lower odds of T2D among 32,015 cases and 84,006 controls (odds ratio 0.71, 95% confidence interval 0.49-0.99, p = 0.041). Functional studies in Angptl4-deficient mice confirm improved insulin sensitivity and glucose homeostasis. In conclusion, genetic inactivation of ANGPTL4 is associated with improved glucose homeostasis and reduced risk of T2D.
  •  
4.
  •  
5.
  • Helgeland, Øyvind, et al. (författare)
  • Characterization of the genetic architecture of infant and early childhood body mass index.
  • 2022
  • Ingår i: Nature metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Early childhood obesity is a growing global concern; however, the role of common genetic variation on infant and child weight development is unclear. Here, we identify 46 loci associated with early childhood body mass index at specific ages, matching different child growth phases, and representing four major trajectory patterns. We perform genome-wide association studies across 12 time points from birth to 8 years in 28,681 children and their parents (27,088 mothers and 26,239 fathers) in the Norwegian Mother, Father and Child Cohort Study. Monogenic obesity genes are overrepresented near identified loci, and several complex association signals near LEPR, GLP1R, PCSK1 and KLF14 point towards a major influence for common variation affecting the leptin-melanocortin system in early life, providing a link to putative treatment strategies. We also demonstrate how different polygenic risk scores transition from birth to adult profiles through early child growth. In conclusion, our results offer a fine-grained characterization of a changing genetic landscape sustaining early childhood growth.
  •  
6.
  • Helgeland, Øyvind, et al. (författare)
  • Genome-wide association study reveals dynamic role of genetic variation in infant and early childhood growth.
  • 2019
  • Ingår i: Nature communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 10:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Infant and childhood growth are dynamic processes with large changes in BMI during development. By performing genome-wide association studies of BMI at 12 time points from birth to eight years (9286 children, 74,105 measurements) in the Norwegian Mother, Father, and Child Cohort Study, replicated in 5235 children, we identify a transient effect in the leptin receptor (LEPR) locus: no effect at birth, increasing effect in infancy, peaking at 6-12 months (rs2767486, P6m = 2.0 × 10-21, β6m = 0.16 sd-BMI), and little effect after age five. We identify a similar transient effect near the leptin gene (LEP), peaking at 1.5 years (rs10487505, P1.5y = 1.3 × 10-8, β1.5y = 0.079 sd-BMI). Both signals are protein quantitative trait loci for soluble-LEPR and LEP in plasma in adults independent from adult traits mapped to the respective genes, suggesting key roles of common variation in the leptin signaling pathway for healthy infant growth.
  •  
7.
  • Justice, Anne E., et al. (författare)
  • Protein-coding variants implicate novel genes related to lipid homeostasis contributing to body-fat distribution
  • 2019
  • Ingår i: Nature Genetics. - : Nature Publishing Group. - 1061-4036 .- 1546-1718. ; 51:3, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF >= 5%) and nine low-frequency or rare (MAF < 5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
  •  
8.
  • Lange, Leslie A, et al. (författare)
  • Whole-Exome Sequencing Identifies Rare and Low-Frequency Coding Variants Associated with LDL Cholesterol.
  • 2014
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297. ; 94:2, s. 233-245
  • Tidskriftsartikel (refereegranskat)abstract
    • Elevated low-density lipoprotein cholesterol (LDL-C) is a treatable, heritable risk factor for cardiovascular disease. Genome-wide association studies (GWASs) have identified 157 variants associated with lipid levels but are not well suited to assess the impact of rare and low-frequency variants. To determine whether rare or low-frequency coding variants are associated with LDL-C, we exome sequenced 2,005 individuals, including 554 individuals selected for extreme LDL-C (>98(th) or <2(nd) percentile). Follow-up analyses included sequencing of 1,302 additional individuals and genotype-based analysis of 52,221 individuals. We observed significant evidence of association between LDL-C and the burden of rare or low-frequency variants in PNPLA5, encoding a phospholipase-domain-containing protein, and both known and previously unidentified variants in PCSK9, LDLR and APOB, three known lipid-related genes. The effect sizes for the burden of rare variants for each associated gene were substantially higher than those observed for individual SNPs identified from GWASs. We replicated the PNPLA5 signal in an independent large-scale sequencing study of 2,084 individuals. In conclusion, this large whole-exome-sequencing study for LDL-C identified a gene not known to be implicated in LDL-C and provides unique insight into the design and analysis of similar experiments.
  •  
9.
  • Liu, Dajiang J, et al. (författare)
  • Meta-analysis of gene-level tests for rare variant association.
  • 2014
  • Ingår i: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 46:2, s. 200-200
  • Tidskriftsartikel (refereegranskat)abstract
    • The majority of reported complex disease associations for common genetic variants have been identified through meta-analysis, a powerful approach that enables the use of large sample sizes while protecting against common artifacts due to population structure and repeated small-sample analyses sharing individual-level data. As the focus of genetic association studies shifts to rare variants, genes and other functional units are becoming the focus of analysis. Here we propose and evaluate new approaches for performing meta-analysis of rare variant association tests, including burden tests, weighted burden tests, variable-threshold tests and tests that allow variants with opposite effects to be grouped together. We show that our approach retains useful features from single-variant meta-analysis approaches and demonstrate its use in a study of blood lipid levels in ∼18,500 individuals genotyped with exome arrays.
  •  
10.
  • Locke, Adam E, et al. (författare)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19
Typ av publikation
tidskriftsartikel (19)
Typ av innehåll
refereegranskat (19)
Författare/redaktör
Hveem, Kristian (16)
Holmen, Oddgeir L. (14)
Willer, Cristen J (13)
Boehnke, Michael (12)
Mahajan, Anubha (12)
Loos, Ruth J F (12)
visa fler...
McCarthy, Mark I (11)
Scott, Robert A (11)
Kathiresan, Sekar (11)
Salomaa, Veikko (10)
Deloukas, Panos (10)
Kooperberg, Charles (10)
Esko, Tõnu (10)
Bottinger, Erwin P. (10)
Wareham, Nicholas J. (9)
Mohlke, Karen L (9)
Tuomilehto, Jaakko (9)
Samani, Nilesh J. (9)
Luan, Jian'an (9)
Collins, Francis S. (9)
Morris, Andrew P. (9)
Lu, Yingchang (9)
Perola, Markus (8)
Rudan, Igor (8)
North, Kari E. (8)
Kuusisto, Johanna (8)
Laakso, Markku (8)
Langenberg, Claudia (8)
Saleheen, Danish (8)
Thorsteinsdottir, Un ... (8)
Stefansson, Kari (8)
Abecasis, Goncalo R. (8)
Peters, Annette (8)
Strauch, Konstantin (8)
Metspalu, Andres (8)
Palmer, Colin N. A. (8)
Morris, Andrew D (8)
Hayward, Caroline (8)
Boerwinkle, Eric (8)
Kanoni, Stavroula (8)
Lakka, Timo A (8)
Jackson, Anne U. (8)
Mihailov, Evelin (8)
Rauramaa, Rainer (8)
Borecki, Ingrid B. (8)
Steinthorsdottir, Va ... (8)
Lindgren, Cecilia M. (8)
Dedoussis, George (8)
Stringham, Heather M (8)
Danesh, John (8)
visa färre...
Lärosäte
Lunds universitet (15)
Umeå universitet (10)
Uppsala universitet (9)
Göteborgs universitet (6)
Karolinska Institutet (5)
Högskolan Dalarna (2)
visa fler...
Stockholms universitet (1)
visa färre...
Språk
Engelska (19)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (19)
Naturvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy