SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hone A) "

Sökning: WFRF:(Hone A)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2019
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  • Ashton, Nicholas J., et al. (författare)
  • A plasma protein classifier for predicting amyloid burden for preclinical Alzheimer's disease.
  • 2019
  • Ingår i: Science advances. - : American Association for the Advancement of Science (AAAS). - 2375-2548. ; 5:2
  • Tidskriftsartikel (refereegranskat)abstract
    • A blood-based assessment of preclinical disease would have huge potential in the enrichment of participants for Alzheimer's disease (AD) therapeutic trials. In this study, cognitively unimpaired individuals from the AIBL and KARVIAH cohorts were defined as Aβ negative or Aβ positive by positron emission tomography. Nontargeted proteomic analysis that incorporated peptide fractionation and high-resolution mass spectrometry quantified relative protein abundances in plasma samples from all participants. A protein classifier model was trained to predict Aβ-positive participants using feature selection and machine learning in AIBL and independently assessed in KARVIAH. A 12-feature model for predicting Aβ-positive participants was established and demonstrated high accuracy (testing area under the receiver operator characteristic curve = 0.891, sensitivity = 0.78, and specificity = 0.77). This extensive plasma proteomic study has unbiasedly highlighted putative and novel candidates for AD pathology that should be further validated with automated methodologies.
  •  
4.
  • Chatterjee, P., et al. (författare)
  • Plasma metabolites associated with biomarker evidence of neurodegeneration in cognitively normal older adults
  • 2021
  • Ingår i: Journal of Neurochemistry. - : Wiley. - 0022-3042 .- 1471-4159. ; 159:2, s. 389-402
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a progressive neurodegenerative disorder that currently has no cure. Identifying biochemical changes associated with neurodegeneration prior to symptom onset, will provide insight into the biological mechanisms associated with neurodegenerative processes, that may also aid in identifying potential drug targets. The current study therefore investigated associations between plasma neurofilament light chain (NF-L), a marker of neurodegeneration, with plasma metabolites that are products of various cellular processes. Plasma NF-L, measured by ultrasensitive Single molecule array (Simoa) technology (Quanterix) and plasma metabolites, measured by mass-spectrometry (AbsoluteIDQ (R) p400HR kit, BIOCRATES), were assessed in the Kerr Anglican Retirement Village Initiative in Ageing Health (KARVIAH) cohort comprising 100 cognitively normal older adults. Metabolites belonging to biogenic amine (creatinine, symmetric dimethylarginine, asymmetric dimethylarginine; ADMA, kynurenine, trans-4-hydroxyproline), amino acid (citrulline, proline, arginine, asparagine, phenylalanine, threonine) and acylcarnitine classes were observed to have positive correlations with plasma NF-L, suggesting a link between neurodegeneration and biological pathways associated with neurotransmitter regulation, nitric oxide homoeostasis, inflammation and mitochondrial function. Additionally, after stratifying participants based on low/high brain amyloid-beta load (A beta +/-) assessed by positron emission tomography, while creatinine, SDMA and citrulline correlated with NF-L in both A beta- and A beta+ groups, ADMA, proline, arginine, asparagine, phenylalanine and acylcarnitine species correlated with NF-L only in the A beta+ group after adjusting for confounding variables, suggesting that the association of these metabolites with neurodegeneration may be relevant to AD-related neuropathology. Metabolites identified to be associated with plasma NF-L may have the potential to serve as prognostic markers for neurodegenerative diseases, however, further studies are required to validate the current findings in an independent cohort, both cross-sectionally and longitudinally.
  •  
5.
  • Gebremariam, Kidan G., et al. (författare)
  • Self-Assembled Monolayer Engineered ZnO Electron Transport Layer to Improve the Photostability of Organic Solar Cells
  • 2024
  • Ingår i: Energy & Fuels. - 1520-5029 .- 0887-0624. ; 38:14, s. 13304-13314
  • Tidskriftsartikel (refereegranskat)abstract
    • The degradation of organic solar cells (OSCs) can occur in any of the layers, underlining the importance of each layer in prolonging their lifetime. To enhance the performance and stability of inverted OSCs (i-OSCs), interfacial modification has been employed. In this context, two self-assembled monolayers (SAMs), namely, octadecanthiol (ODT) and octadecyltrimethoxysilane (OTMS), were utilized to effectively passivate typical surface defects in the ZnO electron transport layer (ETL). The SAM-treated ZnO films were found to be more hydrophobic, which reduced surface defects produced by adsorbed oxygen and hydroxyl groups. Consequently, the power conversion efficiency (PCE) of the i-OSCs comprising an indacenodithieno[3,2-b]thiophene-alt-5,5-di(thiophen-2-yl)-2,2-bithiazole (PIDTT-DTBTz) donor blended with [6,6]-phenyl-C71-butyric acid methyl ester (PC70BM) acceptor increased from 4.20% in pristine ZnO- to 5.01 and 5.37% in ODT- and OTMS-treated ZnO-based devices, respectively. In addition, the photostability of the device substantially improved. Hence, devices based on ZnO treated with ODT and OTMS kept 76 and 89% of their initial PCE, respectively, while pristine ZnO-based devices retained only 66% of the initial PCE after 48 h of irradiation. The improved PCE and extended lifetime of the i-OSCs can be attributed to enhanced charge transfer, the reduction in both bimolecular and trap-assisted recombination processes, and the enhanced interface between the ETL and the active layer. Moreover, it has been observed that the OTMS-treated ZnO ETL-based i-OSC offers better stability and more efficient devices compared to the ODT-treated ZnO ETL-based devices. This can be attributed to the favorable dipole moment generated by the increased electrostatic potential at the anchor group, which promotes improved device performance.
  •  
6.
  • Waketola, Alemayehu G., et al. (författare)
  • Embedding plasmonic gold nanoparticles in a ZnO layer enhanced the performance of inverted organic solar cells based on an indacenodithieno[3,2-b]thiophene-alt-5,5'-di(thiophen-2-yl)-2,2'-bithiazole-based push-pull polymer
  • 2023
  • Ingår i: RSC Advances. - 2046-2069. ; 13:24, s. 16175-16184
  • Tidskriftsartikel (refereegranskat)abstract
    • Recently, plasmonic nanoparticles (NPs) have attracted considerable attention as good candidates for enhancing the power conversion efficiency (PCE) of organic solar cells (OSCs) owing to their localized surface plasmon resonance (LSPR). In this study, the effect of embedding colloidal gold nanoparticles (cAu NPs) in the ZnO electron transport layer (ETL) on the PCEs of wide band gap polymer-based inverted OSCs was investigated. The active layer was composed of a bulk heterojunction of conjugated polymer based on indacenodithieno[3,2-b]thiophene and 5,5'-di(thiophen-2-yl)-2,2'-bithiazole PIDTT-DTBTz as a donor and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. The PCE of the reference device was improved by 22% when 10 wt% cAu NPs were embedded in the ZnO ETL. The short circuit current density (J(SC)) and fill factor (FF) were the main photovoltaic parameters contributing to the PCE enhancement. An improved absorption in the active layer due to the LSPR of cAu NPs as well as efficient exciton dissociation and charge collection were found to be the reasons for the enhanced J(SC) while the increase in FF was mainly due to the suppressed traps and improved conductivity of the ZnO layer by the NPs.
  •  
7.
  • Waketola, Alemayehu G., et al. (författare)
  • Enhancing the Performance of Wide-Bandgap Polymer-Based Organic Solar Cells through Silver Nanorod Integration
  • 2023
  • Ingår i: ACS Omega. - 2470-1343. ; In Press
  • Tidskriftsartikel (refereegranskat)abstract
    • Light trapping induced by the introduction of metallic nanoparticles has been shown to improve photo absorption in organic solar cells (OSCs). Researchers in the fields of plasmonics and organic photovoltaics work together to boost sunlight absorption and photon-electron interactions in order to improve device performance. In this contribution, an inverted OSC was fabricated by using indacenodithieno[3,2-b]thiophene-alt-2,2′-bithiazole (PIDTT-BTz) as a wide-band gap donor copolymer and (6,6)-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor. Silver nanorods (Ag-NRs), synthesized by precipitation method, were embedded in the active layer of the solar cell. The device fabricated with 1 wt % Ag-NRs in the active layer showed a 26% improvement in power conversion efficiency (PCE) when exposed to 100 mW/cm2 simulated solar illumination. The role of Ag-NRs in the performance improvement of the OSCs was analyzed systematically using morphological, electrical, and optical characterization methods. The light trapping and exciton generation were improved due to the localized surface plasmon resonance (LSPR) activated in Ag-NRs in the form of longitudinal and transverse modes. The photoactive layers (PIDTT-BTz:PC71BM) with the incorporation of 0.5 and 1 wt % Ag-NR showed increased absorption, while the absorption with 1.5 wt % Ag-NRs appeared to be reduced in the wavelength range from 400 to 580 nm. Ag-NRs play a favorable role in exciton photogeneration and dissociation due to the two LSPR modes generated by the Ag-NRs. In the optimized device, the short-circuit current density (JSC) increased from 11.92 to 14.25 mA/cm2, resulting in an increase in the PCE from 3.94 to 4.93%, which is attributed to the improved light-trapping by LSPR using Ag-NRs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy