SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hosseini A) ;mspu:(conferencepaper)"

Sökning: WFRF:(Hosseini A) > Konferensbidrag

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Khorrami, F., et al. (författare)
  • An up-to-date block model and strain rate map of Iran using integrated campaign-mode and permanent GPS velocities
  • 2019
  • Ingår i: 27th IUGG General Assembly.
  • Konferensbidrag (refereegranskat)abstract
    • Iran accommodates a large part of the ongoing Arabia-Eurasia collision deformation. Because of such active tectonics, the country suffers from intensive seismicity and frequent destructive earthquakes in different locations.To study further the crustal deformation in Iran, we processed the data collected during 10 years (2006-2015) from the Iranian Permanent GNSS Network and combined them with previously published velocity solutions from GPS survey measurements during 1997–2013. We analysed this velocity field using a continuum approach to compute a new strain rate map for this region and we designed a block model based on the main geological, morphological, and seismic structures. Comparison between both approaches suggests similar results and allow us to present the first comprehensive first order fault slip rate estimates for the whole of Iran. Our results confirm most of the results from previous geodetic studies. Moreover, we also show a trade-off between the coupling ratio of the Iranian Makran subduction interface and the kinematic of the faults north of the Makran in the Jazmurian depression. Although too scarce to accurately estimate a coupling ratio, we show that coupling higher than 0.4 on the plate interface down to a depth of 25 km will induce extension on the E-W faults in the Jazmurian region. However, the sites close to the shoreline suggest a low coupling ratio, hence the coupling on this plate interface is probably more complicated than previously described and the Iranian Makran subduction interface mechanical behaviour might be similar to that on the Hellenic subduction zone.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Hosseini, Vahid A., 1987-, et al. (författare)
  • Study of the effect of tool geometry on semisolid stir welding of a AZ91 magnesium alloy
  • 2015
  • Ingår i: Proceedings of the 18th International Conference on Joining Materials. - : JOM-Institute. ; , s. 1-10
  • Konferensbidrag (refereegranskat)abstract
    • Semisolid stir welding is a newly developed method suitable for joining of the magnesium alloy AZ91. In this study, the effect of tool geometries on the joint properties such as bending strength and the occurrence of porosity are studied. A 2 mm-thick Mg-25%Zn interlayer was placed between two AZ91 plates and the plate was heated up to 530°C before joining. At this temperature, when both the interlayer and the base metal were in the semisolid state, a stirrer was introduced into the joint. Drill-tip and round shape stirrer tools were employed at three different stirring rates. Welds produced with the two methods showed similar properties in the shear punch test. However, using the round tool geometry resulted in welds with excellent bending strength closely matching that of the base metal especially at the highest stirring rate. The improved properties when using the round tool was a result of the formation of a very fine and uniform microstructure with a low content of porosity.
  •  
6.
  •  
7.
  •  
8.
  •  
9.
  • Klačková, I., et al. (författare)
  • Five years operation experience with the AGIPD detectors at the European XFEL
  • 2023
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE - International Society for Optical Engineering. - 9781510662827
  • Konferensbidrag (refereegranskat)abstract
    • The European X-ray Free Electron Laser (EuXFEL) began its user operation five years ago, opening and offering new research possibilities. The facility delivers high brilliance, ultra-short, spatially coherent X-ray pulses with a high repetition rate to six instruments (FXE, SPB/SFX, MID, HED, SCS and SQS) by means of three different beamlines (SASE 1, SASE 2 and SASE 3). One of the first detectors used for early-stage experiments was the Adaptive Gain Integrating Pixel Detector (AGIPD), custom designed to meet the challenging needs of scientific instruments. The AGIPD is a megahertz-rate integrating hybrid megapixel camera with a per-pixel adaptive gain amplification, allowing the integration of up to 104 of 12 keV photons per pixel in its low gain stage. Currently, three scientific instruments, namely SPB/SFX, MID and HED employ the AGIPD systems, the latter mentioned using a prototype, half-megapixel camera with an upgraded version of readout ASICs. The AGIPDs at EuXFEL are successfully used for experimental techniques like serial femtosecond crystallography, MHz single particle imaging, MHz X-ray photon correlation spectroscopy or MHz diffraction of materials under high pressures in a diamond anvil cell. Since September 2017, the AGIPD is continuously used and has become an established detector technology, with further advancements and developments planned. Delivering quality experimental data requires reliable and reproducible detector characterisation and calibration that have to be performed regularly with a continuous improvement of correction methods in close collaboration with scientific instruments. This work summarises five years of experience operating the AGIPD detectors at the EuXFEL scientific instruments. It gives an overview of scientific capabilities and examples of successful studies performed with AGIPD detectors. Moreover, challenges concerning detector calibration and characterisation are presented. 
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy