SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hutchings J.) ;hsvcat:4"

Sökning: WFRF:(Hutchings J.) > Lantbruksvetenskap

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Petersen, S. O., et al. (författare)
  • In-vitro method and model to estimate methane emissions from liquid manure management on pig and dairy farms in four countries
  • 2024
  • Ingår i: Journal of Environmental Management. - : Academic Press. - 0301-4797 .- 1095-8630. ; 353
  • Tidskriftsartikel (refereegranskat)abstract
    • Methane (CH4) emissions from manure management on livestock farms are a key source of greenhouse gas emissions in some regions and for some production systems, and the opportunities for mitigation may be significant if emissions can be adequately documented. We investigated a method for estimating CH4 emissions from liquid manure (slurry) that is based on anaerobic incubation of slurry collected from commercial farms. Methane production rates were used to derive a parameter of the Arrhenius temperature response function, lnA', representing the CH4 production potential of the slurry at the time of sampling. Results were used for parameterization of an empirical model to estimate annual emissions with daily time steps, where CH4 emissions from individual sources (barns, outside storage tanks) can be calculated separately. A monitoring program was conducted in four countries, i.e., Denmark, Sweden, Germany and the Netherlands, during a 12-month period where slurry was sampled to represent barn and outside storage on finishing pig and dairy farms. Across the four countries, lnA' was higher in pig slurry compared to cattle slurry (p < 0.01), and higher in slurry from barns compared to outside storage (p < 0.01). In a separate evaluation of the incubation method, in-vitro CH4 production rates were comparable with in-situ emissions. The results indicate that lnA' in barns increases with slurry age, probably due to growth or adaptation of the methanogenic microbial community. Using lnA' values determined experimentally, empirical models with daily time steps were constructed for finishing pig and dairy farms and used for scenario analyses. Annual emissions from pig slurry were predicted to be 2.5 times higher than those from cattle slurry. Changing the frequency of slurry export from the barn on the model pig farm from 40 to 7 d intervals reduced total annual CH4 emissions by 46 %; this effect would be much less on cattle farms with natural ventilation. In a scenario with cattle slurry, the empirical model was compared with the current IPCC methodology. The seasonal dynamics were less pronounced, and annual CH4 emissions were lower than with the current methodology, which calls for further investigations. Country-specific models for individual animal categories and point sources could be a tool for assessing CH4 emissions and mitigation potentials at farm level. 
  •  
2.
  •  
3.
  •  
4.
  • Routh, Joyanto, et al. (författare)
  • Organic carbon characteristics in Swedish forest soil trace post-depositional carbon dynamics
  • 2016
  • Ingår i: European Journal of Soil Science. - : WILEY-BLACKWELL. - 1351-0754 .- 1365-2389. ; 67:4, s. 492-503
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated soil organic carbon (SOC) characteristics in three forests along a north-south transect in Sweden where these forest types cover about 69% of the landscape. There was variation in C-14 ages, and the median ages ranged from about 25 to amp;gt; 2500 cal BP in SOC. Although total SOC and nitrogen (N) contents decreased, stable carbon isotope and humification indices increased with depth. These progressive changes with depth and age were related to degradation. The delta C-13 values and specific biomarkers indicated that organic carbon was primarily from C-3 plants. Biomarkers were effective in distinguishing OC input from specific sources (i.e. angiosperms, gymnosperms and grasses). A sharp decrease in biomarkers with depth indicated degradation of OC in the upper soil horizon, and limited contribution in the subsoil towards the stabilization of SOC. The sharp decrease in carbon stocks and C-14 age in the soil OC pool with increasing soil depth, and quite large values for the percentage of modern carbon, suggested a decrease in SOC pools. Overall, these results showed that carbon sequestration in high latitude forests was small, and their role as potential carbon sinks needs to be reassessed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy