SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Illig Thomas) ;lar1:(gu)"

Search: WFRF:(Illig Thomas) > University of Gothenburg

  • Result 1-10 of 14
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Speliotes, Elizabeth K., et al. (author)
  • Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 937-948
  • Journal article (peer-reviewed)abstract
    • Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.
  •  
2.
  • Heid, Iris M, et al. (author)
  • Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  • 2010
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 42:11, s. 949-960
  • Journal article (peer-reviewed)abstract
    • Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10⁻⁹ to P = 1.8 × 10⁻⁴⁰) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10⁻³ to P = 1.2 × 10⁻¹³). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions.
  •  
3.
  • Lango Allen, Hana, et al. (author)
  • Hundreds of variants clustered in genomic loci and biological pathways affect human height.
  • 2010
  • In: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 467:7317, s. 832-8
  • Journal article (peer-reviewed)abstract
    • Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.
  •  
4.
  • Shungin, Dmitry, et al. (author)
  • New genetic loci link adipose and insulin biology to body fat distribution.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 187-378
  • Journal article (peer-reviewed)abstract
    • Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.
  •  
5.
  • Locke, Adam E, et al. (author)
  • Genetic studies of body mass index yield new insights for obesity biology.
  • 2015
  • In: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 518:7538, s. 197-401
  • Journal article (peer-reviewed)abstract
    • Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10(-8)), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ∼2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.
  •  
6.
  •  
7.
  • Berndt, Sonja I., et al. (author)
  • Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture
  • 2013
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1061-4036 .- 1546-1718. ; 45:5, s. 501-U69
  • Journal article (peer-reviewed)abstract
    • Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.
  •  
8.
  • Prokopenko, Inga, et al. (author)
  • Variants in MTNR1B influence fasting glucose levels
  • 2009
  • In: Nature Genetics. - : Springer Science and Business Media LLC. - 1546-1718 .- 1061-4036. ; 41:1, s. 77-81
  • Journal article (peer-reviewed)abstract
    • To identify previously unknown genetic loci associated with fasting glucose concentrations, we examined the leading association signals in ten genome-wide association scans involving a total of 36,610 individuals of European descent. Variants in the gene encoding melatonin receptor 1B (MTNR1B) were consistently associated with fasting glucose across all ten studies. The strongest signal was observed at rs10830963, where each G allele (frequency 0.30 in HapMap CEU) was associated with an increase of 0.07 (95% CI = 0.06-0.08) mmol/l in fasting glucose levels (P = 3.2 x 10(-50)) and reduced beta-cell function as measured by homeostasis model assessment (HOMA-B, P = 1.1 x 10(-15)). The same allele was associated with an increased risk of type 2 diabetes (odds ratio = 1.09 (1.05-1.12), per G allele P = 3.3 x 10(-7)) in a meta-analysis of 13 case-control studies totaling 18,236 cases and 64,453 controls. Our analyses also confirm previous associations of fasting glucose with variants at the G6PC2 (rs560887, P = 1.1 x 10(-57)) and GCK (rs4607517, P = 1.0 x 10(-25)) loci.
  •  
9.
  • Coviello, Andrea D, et al. (author)
  • A genome-wide association meta-analysis of circulating sex hormone-binding globulin reveals multiple Loci implicated in sex steroid hormone regulation.
  • 2012
  • In: PLoS genetics. - : Public Library of Science (PLoS). - 1553-7404 .- 1553-7390. ; 8:7
  • Journal article (peer-reviewed)abstract
    • Sex hormone-binding globulin (SHBG) is a glycoprotein responsible for the transport and biologic availability of sex steroid hormones, primarily testosterone and estradiol. SHBG has been associated with chronic diseases including type 2 diabetes (T2D) and with hormone-sensitive cancers such as breast and prostate cancer. We performed a genome-wide association study (GWAS) meta-analysis of 21,791 individuals from 10 epidemiologic studies and validated these findings in 7,046 individuals in an additional six studies. We identified twelve genomic regions (SNPs) associated with circulating SHBG concentrations. Loci near the identified SNPs included SHBG (rs12150660, 17p13.1, p = 1.8×10(-106)), PRMT6 (rs17496332, 1p13.3, p = 1.4×10(-11)), GCKR (rs780093, 2p23.3, p = 2.2×10(-16)), ZBTB10 (rs440837, 8q21.13, p = 3.4×10(-09)), JMJD1C (rs7910927, 10q21.3, p = 6.1×10(-35)), SLCO1B1 (rs4149056, 12p12.1, p = 1.9×10(-08)), NR2F2 (rs8023580, 15q26.2, p = 8.3×10(-12)), ZNF652 (rs2411984, 17q21.32, p = 3.5×10(-14)), TDGF3 (rs1573036, Xq22.3, p = 4.1×10(-14)), LHCGR (rs10454142, 2p16.3, p = 1.3×10(-07)), BAIAP2L1 (rs3779195, 7q21.3, p = 2.7×10(-08)), and UGT2B15 (rs293428, 4q13.2, p = 5.5×10(-06)). These genes encompass multiple biologic pathways, including hepatic function, lipid metabolism, carbohydrate metabolism and T2D, androgen and estrogen receptor function, epigenetic effects, and the biology of sex steroid hormone-responsive cancers including breast and prostate cancer. We found evidence of sex-differentiated genetic influences on SHBG. In a sex-specific GWAS, the loci 4q13.2-UGT2B15 was significant in men only (men p = 2.5×10(-08), women p = 0.66, heterogeneity p = 0.003). Additionally, three loci showed strong sex-differentiated effects: 17p13.1-SHBG and Xq22.3-TDGF3 were stronger in men, whereas 8q21.12-ZBTB10 was stronger in women. Conditional analyses identified additional signals at the SHBG gene that together almost double the proportion of variance explained at the locus. Using an independent study of 1,129 individuals, all SNPs identified in the overall or sex-differentiated or conditional analyses explained ∼15.6% and ∼8.4% of the genetic variation of SHBG concentrations in men and women, respectively. The evidence for sex-differentiated effects and allelic heterogeneity highlight the importance of considering these features when estimating complex trait variance.
  •  
10.
  • Huth, Cornelia, et al. (author)
  • IL6 gene promoter polymorphisms and type 2 diabetes - Joint analysis of individual participants' data from 21 studies
  • 2006
  • In: DIABETES. - : American Diabetes Association. - 0012-1797 .- 1939-327X. ; 55:10, s. 2915-2921
  • Journal article (peer-reviewed)abstract
    • Several lines of evidence indicate a causal role of the cytokine interleukin (IL)-6 in the development of type 2 diabetes in humans. Two common polymorphisms in the promoter of the IL-6 encoding gene IL6, −174G&gt;C (rs1800795) and −573G&gt;C (rs1800796), have been investigated for association with type 2 diabetes in numerous studies but with results that have been largely equivocal. To clarify the relationship between the two IL6 variants and type 2 diabetes, we analyzed individual data on &gt;20,000 participants from 21 published and unpublished studies. Collected data represent eight different countries, making this the largest association analysis for type 2 diabetes reported to date. The GC and CC genotypes of IL6 −174G&gt;C were associated with a decreased risk of type 2 diabetes (odds ratio 0.91, P = 0.037), corresponding to a risk modification of nearly 9%. No evidence for association was found between IL6 −573G&gt;C and type 2 diabetes. The observed association of the IL6 −174 C-allele with a reduced risk of type 2 diabetes provides further evidence for the hypothesis that immune mediators are causally related to type 2 diabetes; however, because the association is borderline significant, additional data are still needed to confirm this finding.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 14
Type of publication
journal article (14)
Type of content
peer-reviewed (14)
Author/Editor
Illig, Thomas (14)
Wichmann, H. Erich (12)
Hofman, Albert (12)
Boehnke, Michael (11)
Tuomilehto, Jaakko (11)
Harris, Tamara B (11)
show more...
Loos, Ruth J F (11)
Groop, Leif (10)
Ohlsson, Claes, 1965 (10)
Wareham, Nicholas J. (10)
van Duijn, Cornelia ... (10)
Gieger, Christian (10)
Rivadeneira, Fernand ... (10)
Uitterlinden, André ... (10)
Feitosa, Mary F. (10)
Grallert, Harald (10)
Amin, Najaf (9)
Mangino, Massimo (9)
Barroso, Ines (9)
Luan, Jian'an (9)
Gudnason, Vilmundur (9)
Heid, Iris M (9)
Prokopenko, Inga (9)
Borecki, Ingrid B. (9)
Perola, Markus (8)
Soranzo, Nicole (8)
Campbell, Harry (8)
Rudan, Igor (8)
Kuusisto, Johanna (8)
Laakso, Markku (8)
McCarthy, Mark I (8)
Ridker, Paul M. (8)
Chasman, Daniel I. (8)
Mohlke, Karen L (8)
Lehtimäki, Terho (8)
Thorleifsson, Gudmar (8)
Thorsteinsdottir, Un ... (8)
Stefansson, Kari (8)
Pramstaller, Peter P ... (8)
Wilson, James F. (8)
Eriksson, Johan G. (8)
Jansson, John-Olov, ... (8)
Zillikens, M. Carola (8)
Hayward, Caroline (8)
Wood, Andrew R (8)
Fox, Caroline S. (8)
O'Connell, Jeffrey R ... (8)
Lindgren, Cecilia M. (8)
Morris, Andrew P. (8)
Kutalik, Zoltan (8)
show less...
University
Lund University (13)
Uppsala University (9)
Karolinska Institutet (7)
Umeå University (5)
Högskolan Dalarna (2)
Language
English (14)
Research subject (UKÄ/SCB)
Medical and Health Sciences (14)
Natural sciences (3)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view