SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Indukuri Rajitha) "

Sökning: WFRF:(Indukuri Rajitha)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Birgersson, Madeleine, et al. (författare)
  • ERβ in Granulosa Cell Tumors and Its Clinical Potential
  • 2023
  • Ingår i: Endocrinology. - : The Endocrine Society. - 0013-7227 .- 1945-7170. ; 164:6
  • Forskningsöversikt (refereegranskat)abstract
    • Granulosa cell tumors (GCTs) are rare ovarian tumors comprising an adult and a juvenile subtype. They have a generally good prognosis, but the survival rate drastically declines in patients with late-stage or recurring tumors. Due to the rarity of GCTs, the tumor type is largely understudied and lacks a specific treatment strategy. Estrogen receptor beta (ERβ/ESR2) has been found to be highly expressed in GCTs, which could be of therapeutic importance since it can be targeted with small molecules. However, its role in GCTs is not known. In this review, we summarize the current knowledge about the action of ERβ in the ovary and discuss its prospective role in GCTs.
  •  
2.
  • Birgersson, Madeleine, et al. (författare)
  • Ovarian ERβ cistrome and transcriptome reveal chromatin interaction with LRH-1
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Background:  Estrogen receptor beta (ERβ, Esr2) plays a pivotal role in folliculogenesis and ovulation, yet its exact mechanism of action is mainly uncharacterized.Results: We here performed ChIP-sequencing of mouse ovaries followed by complementary RNA-sequencing of wild-type and ERβ knockout ovaries. By integrating the cistrome and transcriptome, we identify its direct target genes and enriched biological functions in the ovary. This demonstrates a strong impact on genes regulating organism development, cell migration, lipid metabolism, response to hypoxia, and response to estrogen. Cell-type deconvolution analysis of the bulk RNA-seq data revealed a decrease in luteal cells and an increased proportion of theca cells and a specific type of cumulus cells upon ERβ loss. Moreover, we identify a significant overlap with the gene regulatory network of liver receptor homolog 1 (LRH-1). ERβ and LRH-1 extensively bind to the same chromatin locations in granulosa cells and we corroborate simultaneous co-binding using ChIP re-ChIP, at the ERβ-repressed gene Greb1. At other shared sites (by ERβ-upregulated genes Cyp11a1 and Fkbp5), they do not bind simultaneously. Transactivation assay experimentation further show that ERβ and LRH-1 can inhibit their respective transcriptional activity at classical response elements.Conclusions: We characterize genome-wide ERβ chromatin binding and gene regulations which reveal extensive crosstalk between ERβ and LRH-1. We experimentally corroborate co-binding to target genes and impact on transactivation. Our data offer genome-wide mechanistic underpinnings of ovarian physiology and fertility.
  •  
3.
  • Birgersson, Madeleine, et al. (författare)
  • Ovarian ERβ cistrome and transcriptome reveal chromatin interaction with LRH-1
  • 2023
  • Ingår i: BMC Biology. - : Springer Nature. - 1741-7007. ; 21:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Estrogen receptor beta (ERβ, Esr2) plays a pivotal role in folliculogenesis and ovulation, yet its exact mechanism of action is mainly uncharacterized.Results: We here performed ERβ ChIP-sequencing of mouse ovaries followed by complementary RNA-sequencing of wild-type and ERβ knockout ovaries. By integrating the ERβ cistrome and transcriptome, we identified its direct target genes and enriched biological functions in the ovary. This demonstrated its strong impact on genes regulating organism development, cell migration, lipid metabolism, response to hypoxia, and response to estrogen. Cell-type deconvolution analysis of the bulk RNA-seq data revealed a decrease in luteal cells and an increased proportion of theca cells and a specific type of cumulus cells upon ERβ loss. Moreover, we identified a significant overlap with the gene regulatory network of liver receptor homolog 1 (LRH-1, Nr5a2) and showed that ERβ and LRH-1 extensively bound to the same chromatin locations in granulosa cells. Using ChIP-reChIP, we corroborated simultaneous ERβ and LRH-1 co-binding at the ERβ-repressed gene Greb1 but not at the ERβ-upregulated genes Cyp11a1 and Fkbp5. Transactivation assay experimentation further showed that ERβ and LRH-1 can inhibit their respective transcriptional activity at classical response elements.Conclusions: By characterizing the genome-wide endogenous ERβ chromatin binding, gene regulations, and extensive crosstalk between ERβ and LRH-1, along with experimental corroborations, our data offer genome-wide mechanistic underpinnings of ovarian physiology and fertility.
  •  
4.
  • Hases, Linnea, et al. (författare)
  • Colitis Induces Sex-Specific Intestinal Transcriptomic Responses in Mice
  • 2022
  • Ingår i: International Journal of Molecular Sciences. - : MDPI AG. - 1661-6596 .- 1422-0067. ; 23:18, s. 10408-
  • Tidskriftsartikel (refereegranskat)abstract
    • There are significant sex differences in colorectal cancer (CRC), including in incidence, onset, and molecular characteristics. Further, while inflammatory bowel disease (IBD) is a risk factor for CRC in both sexes, men with IBD have a 60% higher risk of developing CRC compared to women. In this study, we investigated sex differences during colitis-associated CRC (CAC) using a chemically induced CAC mouse model. The mice were treated with azoxymethane (AOM) and dextran sodium sulfate (DSS) and followed for 9 and 15 weeks. We performed RNA-sequencing of colon samples from males (n = 15) and females (n = 15) to study different stages of inflammation and identify corresponding transcriptomic sex differences in non-tumor colon tissue. We found a significant transcriptome response to AOM/DSS treatment in both sexes, including in pathways related to inflammation and cell proliferation. Notably, we found a stronger response in males and that male-specific differentially expressed genes were involved in NF kappa B signaling and circadian rhythm. Further, an overrepresented proportion of male-specific gene regulations were predicted to be targets of Stat3, whereas for females, targets of the glucocorticoid receptor (Gr/Nr3c1) were overrepresented. At 15 weeks, the most apparent sex difference involved genes with functions in T cell proliferation, followed by the regulation of demethylases. The majority of sex differences were thus related to inflammation and the immune system. Our novel data, profiling the transcriptomic response to chemically induced colitis and CAC, indicate clear sex differences in CRC initiation and progression.
  •  
5.
  • Hases, Linnea, et al. (författare)
  • High-fat diet and estrogen impacts the colon and its transcriptome in a sex-dependent manner
  • 2020
  • Ingår i: Scientific Reports. - : Springer Nature. - 2045-2322. ; 10
  • Tidskriftsartikel (refereegranskat)abstract
    • There is a strong association between obesity and colorectal cancer (CRC), especially in men, whereas estrogen protects against both the metabolic syndrome and CRC. Colon is the first organ to respond to high-fat diet (HFD), and estrogen receptor beta (ERβ) can attenuate CRC development. How estrogen impacts the colon under HFD and related sex differences has, however, not been investigated. To dissect this, mice were fed control diet or HFD for 13 weeks and administered receptor-selective estrogenic ligands for the last three weeks. We recorded impact on metabolism, colon crypt proliferation, macrophage infiltration, and the colon transcriptome. We found clear sex differences in the colon transcriptome and in the impact by HFD and estrogens, including on clock genes. ERα-selective activation reduced body weight and generated systemic effects, whereas ERβ-selective activation had local effects in the colon, attenuating HFD-induced macrophage infiltration and epithelial cell proliferation. We here demonstrate how HFD and estrogens modulate the colon microenvironment in a sex- and ER-specific manner.
  •  
6.
  •  
7.
  • Hases, Linnea, et al. (författare)
  • Intestinal estrogen receptor beta suppresses colon inflammation andtumorigenesis in both sexes
  • 2020
  • Ingår i: Cancer Letters. - : Elsevier BV. - 0304-3835 .- 1872-7980. ; 492, s. 54-62
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen hormones protect against colorectal cancer (CRC) and a preventative role of estrogen receptor beta (ERβ) on CRC has been supported using full knockout animals. However, it is unclear through which cells or organ ERβ mediates this effect. To investigate the functional role of intestinal ERβ during colitis-associated CRC we used intestine-specific ERβ knockout mice treated with azoxymethane and dextran sodium sulfate, followed by ex vivo organoid culture to corroborate intrinsic effects. We explored genome-wide impact on TNFα signaling using human CRC cell lines and chromatin immunoprecipitation assay to mechanistically characterize the regulation of ERβ. Increased tumor formation in males and tumor size in females was noted upon intestine-specific ERβ knockout, accompanied by enhanced local expression of TNFα, deregulation of key NFκB targets, and increased colon ulceration. Unexpectedly, we noted especially strong effects in males. We corroborated that intestinal ERβ protects against TNFα-induced damage intrinsically, and characterized an underlying genome-wide signaling mechanism in CRC cell lines whereby ERβ binds to cis-regulatory chromatin areas of key NFκB regulators. Our results support a protective role of intestinal ERβ against colitis-associated CRC, proposing new therapeutic strategies.
  •  
8.
  • Huang, Dan, et al. (författare)
  • Estrogen Receptor beta (ESR2) Transcriptome and Chromatin Binding in a Mantle Cell Lymphoma Tumor Model Reveal the Tumor-Suppressing Mechanisms of Estrogens
  • 2022
  • Ingår i: Cancers. - : MDPI. - 2072-6694. ; 14:13, s. 3098-
  • Tidskriftsartikel (refereegranskat)abstract
    • Mantle cell lymphoma (MCL) is a non-Hodgkin lymphoma with one of the highest male-tofemale incidence ratios. The reason for this is not clear, but epidemiological as well as experimental data have suggested a role for estrogens, particularly acting through estrogen receptor beta (ESR2). To study the ESR2 effects on MCL progression, MCL cells sensitive and resistant to the Bruton tyrosine kinase inhibitor ibrutinib were grafted to mice and treated with the ESR2-selective agonist diarylpropionitrile (DPN). The results showed that the DPN treatment of mice grafted with both ibrutinib-sensitive and -resistant MCL tumors resulted in impaired tumor progression. To identify the signaling pathways involved in the impaired tumor progression following ESR2 agonist treatment, the transcriptome and ESR2 binding to target genes were investigated by genome-wide chromatin immunoprecipitation in Granta-519 MCL tumors. DPN-regulated genes were enriched in several biological processes that included cell-cell adhesion, endothelial-mesenchymal transition, nuclear factor-kappaB signaling, vasculogenesis, lymphocyte proliferation, and apoptosis. In addition, downregulation of individual genes, such as SOX11 and MALAT1, that play a role in MCL progression was also observed. Furthermore, the data suggested an interplay between the lymphoma cells and the tumor microenvironment in response to the ESR2 agonist. In conclusion, the results clarify the mechanisms by which estrogens, via ESR2, impair MCL tumor progression and provide a possible explanation for the sex-dependent difference in incidence. Furthermore, targeting ESR2 with a selective agonist may be an additional option when considering the treatment of both ibrutinib-sensitive and -resistant MCL tumors.
  •  
9.
  • Indukuri, Rajitha, et al. (författare)
  • An Optimized ChIP-Seq Protocol to Determine Chromatin Binding of Estrogen Receptor Beta.
  • 2022
  • Ingår i: Methods in Molecular Biology. - New York, NY : Springer Nature. - 1064-3745 .- 1940-6029. ; 2418, s. 203-221
  • Tidskriftsartikel (refereegranskat)abstract
    • Estrogen regulates transcription through two nuclear receptors, ERα and ERβ, in a tissue and cellular-dependent manner. Both the receptors bind estrogen and activate transcription through direct or indirect interactions with DNA. Revealing their interactions with the chromatin is key to understanding their transcriptional activities and their biological functions. Chromatin-immunoprecipitation followed by sequencing (ChIP-Seq) is a powerful technique to map protein-DNA interactions at precise genomic locations. The genome-wide binding of ERα has been extensively studied. Similar studies of ERβ, however, have been more difficult, in part due to a lack of endogenous expression in cell lines and lack of specific antibodies. In this chapter, we provide an optimized stepwise ChIP protocol for a well-validated ERβ antibody, which is applicable for ChIP-Seq analysis of cell lines with exogenous expression of ERβ.
  •  
10.
  • Indukuri, Rajitha, et al. (författare)
  • Estrogen Receptor Beta Influences the Inflammatory p65 Cistrome in Colon Cancer Cells
  • 2021
  • Ingår i: Frontiers in Endocrinology. - : FRONTIERS. - 1664-2392. ; 12, s. 1-13
  • Tidskriftsartikel (refereegranskat)abstract
    • Inflammation is a primary component of both initiation and promotion of colorectal cancer (CRC). Cytokines secreted by macrophages, including tumor necrosis factor alpha (TNFα), activates the pro-survival transcription factor complex NFκB. The precise mechanism of NFκB in CRC is not well studied, but we recently reported the genome-wide transcriptional impact of TNFα in two CRC cell lines. Further, estrogen signaling influences inflammation in a complex manner and suppresses CRC development. CRC protective effects of estrogen have been shown to be mediated by estrogen receptor beta (ERβ, ESR2), which also impacts inflammatory signaling of the colon. However, whether ERβ impacts the chromatin interaction (cistrome) of the main NFκB subunit p65 (RELA) is not known. We used p65 chromatin immunoprecipitation followed by sequencing (ChIP-Seq) in two different CRC cell lines, HT29 and SW480, with and without expression of ERβ. We here present the p65 colon cistrome of these two CRC cell lines. We identify that RELA and AP1 motifs are predominant in both cell lines, and additionally describe both common and cell line-specific p65 binding sites and correlate these to transcriptional changes related to inflammation, migration, apoptosis and circadian rhythm. Further, we determine that ERβ opposes a major fraction of p65 chromatin binding in HT29 cells, but enhances p65 binding in SW480 cells, thereby impacting the p65 cistrome differently in the two cell lines. However, the biological functions of the regulated genes appear to have similar roles in both cell lines. To our knowledge, this is the first time the p65 CRC cistrome is compared between different cell lines and the first time an influence by ERβ on the p65 cistrome is investigated. Our work provides a mechanistic foundation for a better understanding of how estrogen influences inflammatory signaling through NFκB in CRC cells.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy