SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ingvarsson Pär K) ;pers:(Street Nathaniel 1979)"

Sökning: WFRF:(Ingvarsson Pär K) > Street Nathaniel 1979

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Apuli, Rami-Petteri, et al. (författare)
  • Inferring the Genomic Landscape of Recombination Rate Variation in European Aspen (Populus tremula)
  • 2020
  • Ingår i: G3. - : GENETICS SOCIETY AMERICA. - 2160-1836. ; 10:1, s. 299-309
  • Tidskriftsartikel (refereegranskat)abstract
    • The rate of meiotic recombination is one of the central factors determining genome-wide levels of linkage disequilibrium which has important consequences for the efficiency of natural selection and for the dissection of quantitative traits. Here we present a new, high-resolution linkage map for Populus tremula that we use to anchor approximately two thirds of the P. tremula draft genome assembly on to the expected 19 chromosomes, providing us with the first chromosome-scale assembly for P. tremula (Table 2). We then use this resource to estimate variation in recombination rates across the P. tremula genome and compare these results to recombination rates based on linkage disequilibrium in a large number of unrelated individuals. We also assess how variation in recombination rates is associated with a number of genomic features, such as gene density, repeat density and methylation levels. We find that recombination rates obtained from the two methods largely agree, although the LD-based method identifies a number of genomic regions with very high recombination rates that the map-based method fails to detect. Linkage map and LD-based estimates of recombination rates are positively correlated and show similar correlations with other genomic features, showing that both methods can accurately infer recombination rate variation across the genome. Recombination rates are positively correlated with gene density and negatively correlated with repeat density and methylation levels, suggesting that recombination is largely directed toward gene regions in P. tremula.
  •  
2.
  • Barcala, Maximiliano Estravis, et al. (författare)
  • Whole-genome resequencing facilitates the development of a 50K single nucleotide polymorphism genotyping array for Scots pine (Pinus sylvestris L.) and its transferability to other pine species
  • 2024
  • Ingår i: The Plant Journal. - 0960-7412 .- 1365-313X. ; 117:3, s. 944-955
  • Tidskriftsartikel (refereegranskat)abstract
    • Scots pine (Pinus sylvestris L.) is one of the most widespread and economically important conifer species in the world. Applications like genomic selection and association studies, which could help accelerate breeding cycles, are challenging in Scots pine because of its large and repetitive genome. For this reason, genotyping tools for conifer species, and in particular for Scots pine, are commonly based on transcribed regions of the genome. In this article, we present the Axiom Psyl50K array, the first single nucleotide polymorphism (SNP) genotyping array for Scots pine based on whole-genome resequencing, that represents both genic and intergenic regions. This array was designed following a two-step procedure: first, 192 trees were sequenced, and a 430K SNP screening array was constructed. Then, 480 samples, including haploid megagametophytes, full-sib family trios, breeding population, and range-wide individuals from across Eurasia were genotyped with the screening array. The best 50K SNPs were selected based on quality, replicability, distribution across the draft genome assembly, balance between genic and intergenic regions, and genotype–environment and genotype–phenotype associations. Of the final 49 877 probes tiled in the array, 20 372 (40.84%) occur inside gene models, while the rest lie in intergenic regions. We also show that the Psyl50K array can yield enough high-confidence SNPs for genetic studies in pine species from North America and Eurasia. This new genotyping tool will be a valuable resource for high-throughput fundamental and applied research of Scots pine and other pine species.
  •  
3.
  • Bernhardsson, Carolina, et al. (författare)
  • An Ultra-Dense Haploid Genetic Map for Evaluating the Highly Fragmented Genome Assembly of Norway Spruce (Picea abies)
  • 2019
  • Ingår i: G3. - : Genetics Society of America. - 2160-1836. ; 9:5, s. 1623-1632
  • Tidskriftsartikel (refereegranskat)abstract
    • Norway spruce (Picea abies (L.) Karst.) is a conifer species of substanital economic and ecological importance. In common with most conifers, the P. abies genome is very large (similar to 20 Gbp) and contains a high fraction of repetitive DNA. The current P. abies genome assembly (v1.0) covers approximately 60% of the total genome size but is highly fragmented, consisting of >10 million scaffolds. The genome annotation contains 66,632 gene models that are at least partially validated (), however, the fragmented nature of the assembly means that there is currently little information available on how these genes are physically distributed over the 12 P. abies chromosomes. By creating an ultra-dense genetic linkage map, we anchored and ordered scaffolds into linkage groups, which complements the fine-scale information available in assembly contigs. Our ultra-dense haploid consensus genetic map consists of 21,056 markers derived from 14,336 scaffolds that contain 17,079 gene models (25.6% of the validated gene models) that we have anchored to the 12 linkage groups. We used data from three independent component maps, as well as comparisons with previously published Picea maps to evaluate the accuracy and marker ordering of the linkage groups. We demonstrate that approximately 3.8% of the anchored scaffolds and 1.6% of the gene models covered by the consensus map have likely assembly errors as they contain genetic markers that map to different regions within or between linkage groups. We further evaluate the utility of the genetic map for the conifer research community by using an independent data set of unrelated individuals to assess genome-wide variation in genetic diversity using the genomic regions anchored to linkage groups. The results show that our map is sufficiently dense to enable detailed evolutionary analyses across the P. abies genome.
  •  
4.
  • Grimberg, Åsa, et al. (författare)
  • Storage lipid accumulation is controlled by photoperiodic signal acting via regulators of growth cessation and dormancy in hybrid aspen
  • 2018
  • Ingår i: New Phytologist. - : John Wiley & Sons. - 0028-646X .- 1469-8137. ; 219:2, s. 619-630
  • Tidskriftsartikel (refereegranskat)abstract
    • The signalling pathways that control seasonal modulation of carbon metabolism in perennial plants are poorly understood. Using genetic, metabolic and natural variation approaches, we identify factors mediating photoperiodic control of storage lipid accumulation in the model tree hybrid aspen (Populus tremula x tremuloides). We characterized lipid accumulation in transgenic hybrid aspen with impaired photoperiodic and hormonal responses. Genome-wide association mapping was performed in Swedish aspen (P.tremula) genotypes to determine genetic loci associated with genotype variation in lipid content. Our data show that the storage lipid triacylglycerol (TAG) accumulates in cambial meristem and pith rays of aspen in response to photoperiodic signal controlling growth cessation and dormancy induction. We show that photoperiodic control of TAG accumulation is mediated by the FLOWERING LOCUS T/CONSTANS module, which also controls the induction of growth cessation. Hormonal and chromatin remodelling pathways also contribute to TAG accumulation by photoperiodic signal. Natural variation exists in lipid accumulation that is controlled by input from multiple loci. Our data shed light on how the control of storage metabolism is temporally coordinated with growth cessation and dormancy by photoperiodic signal, and reveals that storage lipid accumulation between seeds and perennating organs of trees may involve distinct regulatory circuits.
  •  
5.
  • Lin, Yao-Cheng, et al. (författare)
  • Functional and evolutionary genomic inferences in Populus through genome and population sequencing of American and European aspen
  • 2018
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 115:46, s. E10970-E10978
  • Tidskriftsartikel (refereegranskat)abstract
    • The Populus genus is one of the major plant model systems, but genomic resources have thus far primarily been available for poplar species, and primarily Populus trichocarpa (Torr. & Gray), which was the first tree with a whole-genome assembly. To further advance evolutionary and functional genomic analyses in Populus, we produced genome assemblies and population genetics resources of two aspen species, Populus tremula L. and Populus tremuloides Michx. The two aspen species have distributions spanning the Northern Hemisphere, where they are keystone species supporting a wide variety of dependent communities and produce a diverse array of secondary metabolites. Our analyses show that the two aspens share a similar genome structure and a highly conserved gene content with P. trichocarpa but display substantially higher levels of heterozygosity. Based on population resequencing data, we observed widespread positive and negative selection acting on both coding and noncoding regions. Furthermore, patterns of genetic diversity and molecular evolution in aspen are influenced by a number of features, such as expression level, coexpression network connectivity, and regulatory variation. To maximize the community utility of these resources, we have integrated all presented data within the PopGenIE web resource (PopGenIE.org).
  •  
6.
  • Liu, Shuyu, et al. (författare)
  • Demographic History and Natural Selection Shape Patterns of Deleterious Mutation Load and Barriers to Introgression across Populus Genome
  • 2022
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 39:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Hybridization and resulting introgression are important processes shaping the tree of life and appear to be far more common than previously thought. However, how the genome evolution was shaped by various genetic and evolutionary forces after hybridization remains unresolved. Here we used whole-genome resequencing data of 227 individuals from multiple widespread Populus species to characterize their contemporary patterns of hybridization and to quantify genomic signatures of past introgression. We observe a high frequency of contemporary hybridization and confirm that multiple previously ambiguous species are in fact F1 hybrids. Seven species were identified, which experienced different demographic histories that resulted in strikingly varied efficacy of selection and burdens of deleterious mutations. Frequent past introgression has been found to be a pervasive feature throughout the speciation of these Populus species. The retained introgressed regions, more generally, tend to contain reduced genetic load and to be located in regions of high recombination. We also find that in pairs of species with substantial differences in effective population size, introgressed regions are inferred to have undergone selective sweeps at greater than expected frequencies in the species with lower effective population size, suggesting that introgression likely have higher potential to provide beneficial variation for species with small populations. Our results, therefore, illustrate that demography and recombination have interplayed with both positive and negative selection in determining the genomic evolution after hybridization.
  •  
7.
  • Müller, Niels A., et al. (författare)
  • A single gene underlies the dynamic evolution of poplar sex determination.
  • 2020
  • Ingår i: Nature Plants. - : Springer Nature. - 2055-0278 .- 2055-026X. ; 6:6, s. 630-637
  • Tidskriftsartikel (refereegranskat)abstract
    • Although hundreds of plant lineages have independently evolved dioecy (that is, separation of the sexes), the underlying genetic basis remains largely elusive. Here we show that diverse poplar species carry partial duplicates of the ARABIDOPSIS RESPONSE REGULATOR 17 (ARR17) orthologue in the male-specific region of the Y chromosome. These duplicates give rise to small RNAs apparently causing male-specific DNA methylation and silencing of the ARR17 gene. CRISPR–Cas9-induced mutations demonstrate that ARR17 functions as a sex switch, triggering female development when on and male development when off. Despite repeated turnover events, including a transition from the XY system to a ZW system, the sex-specific regulation of ARR17 is conserved across the poplar genus and probably beyond. Our data reveal how a single-gene-based mechanism of dioecy can enable highly dynamic sex-linked regions and contribute to maintaining recombination and integrity of sex chromosomes.
  •  
8.
  • Rendón-Anaya, Martha, et al. (författare)
  • Adaptive Introgression Facilitates Adaptation to High Latitudes in European Aspen (Populus tremula L.)
  • 2021
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 38:11, s. 5034-5050
  • Tidskriftsartikel (refereegranskat)abstract
    • Understanding local adaptation has become a key research area given the ongoing climate challenge and the concomitant requirement to conserve genetic resources. Perennial plants, such as forest trees, are good models to study local adaptation given their wide geographic distribution, largely outcrossing mating systems, and demographic histories. We evaluated signatures of local adaptation in European aspen (Populus tremula) across Europe by means of whole-genome resequencing of a collection of 411 individual trees. We dissected admixture patterns between aspen lineages and observed a strong genomic mosaicism in Scandinavian trees, evidencing different colonization trajectories into the peninsula from Russia, Central and Western Europe. As a consequence of the secondary contacts between populations after the last glacial maximum, we detected an adaptive introgression event in a genome region of ∼500 kb in chromosome 10, harboring a large-effect locus that has previously been shown to contribute to adaptation to the short growing seasons characteristic of Northern Scandinavia. Demographic simulations and ancestry inference suggest an Eastern origin—probably Russian—of the adaptive Nordic allele which nowadays is present in a homozygous state at the north of Scandinavia. The strength of introgression and positive selection signatures in this region is a unique feature in the genome. Furthermore, we detected signals of balancing selection, shared across regional populations, that highlight the importance of standing variation as a primary source of alleles that facilitate local adaptation. Our results, therefore, emphasize the importance of migration–selection balance underlying the genetic architecture of key adaptive quantitative traits.
  •  
9.
  • Wang, Jing, et al. (författare)
  • A major locus controls local adaptation and adaptive life history variation in a perennial plant
  • 2018
  • Ingår i: Genome Biology. - : BioMed Central. - 1465-6906 .- 1474-760X. ; 19
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: The initiation of growth cessation and dormancy represent critical life history trade offs between survival and growth and have important fitness effects in perennial plants Such adaptive life history traits often show strong local adaptation along environmental gradients but, despite then importance, the genetic architecture of these traits remains poorly understood.Results: We integrate whole genome re sequencing with environmental and phenotypic data from common garden experiments to investigate the genomic basis of local adaptation across a latitudinal gradient in European aspen (Populus tremula). A single genomic region containing the PtFT2 gene mediates local adaptation in the timing of bud set and explains 65% of the observed genetic variation in bud set This locus is the likely target of a recent selective sweep that originated right before or during colonization of northern Scandinavia following the last glaciation Field and greenhouse experiments confirm that variation in PtFT2 gene expression affects the phenotypic variation in bud set that we observe in wild natural populations.Conclusions: Our results reveal a major effect locus that determines the timing of bud set and that has facilitated rapid adaptation to shorter growing seasons and colder climates in European aspen. The discovery of a single locus explaining a substantial fraction of the variation in a key life-history trait is remarkable, given that such traits are generally considered to be highly polygenic. These findings provide a dramatic illustration of how loci of large effect for adaptive traits can arise and be maintained over large geographical scales in natural populations.
  •  
10.
  • Wang, Xi, 1990- (författare)
  • The roles of demography and natural selection in shaping genome-wide variation of Norway spruce
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Understanding the relative contribution of genetic drift, natural selection, and mutation to genetic variation, and quantifying adaptive evolution and the effects of natural selection in species are enduring goals of evolutionary genetics. Norway spruce (Picea abies) is one of the most important conifer species that dominates from both an ecological and economical point of view in many boreal ecosystems. Recently published reference genome of Norway spruce makes it possible to perform population genomic studies to understand the basis of genetic variation and evolutionary effects of natural selection in P. abies by using next-generation sequencing (NGS) data. We create an ultra-dense genetic linkage map for Norway spruce using sequence capture data. The consensus genetic map consists of 21,056 markers derived from 14,336 scaffolds that contain 17,079 gene models (25.6% of the validated gene models) that we have anchored to the 12 linkage groups (LGs). We also demonstrate, however, that approximately 3.8% of the anchored scaffolds and 1.6% of the gene models covered by the consensus map have likely assembly errors. By performing population genetic analyses using the genomic regions anchored to LGs, our genetic linkage map is sufficiently dense to enable detailed evolutionary analyses across the P. abies genome.In order to understand how different evolutionary forces have shaped patterns of nucleotide diversity in Norway spruce, we perform population genomic analyses using whole-genome resequencing data. We find that genetic diversity is low across a number of populations in spite of a very wide geographic distribution of P. abies. The demographic history of several reoccurring bottlenecks with concomitant decreases in effective population size, the recurrent natural selection (both purifying and positive selection), and the low overall mutation rates seen in conifers, together make contribute to the loss of genome-wide nucleotide diversity in Norway spruce.We quantify adaptive evolution and the effects of natural selection across the Norway spruce whole genome. The results show that negative selection is very limited in coding regions, while positive selection is rare in coding regions but very strong in non-coding regions, suggesting the great importance of regulatory changes in evolutionary history of P. abies. We further find a positive correlation between adaptive rate with recombination rate and a negative correlation between adaptive rate and gene density, suggesting a widespread influence from Hill-Robertson interference to efficiency of protein adaptation in P. abies. The distinct population statistics between genomic regions under either positive or balancing selection with that under neutral regions indicate impact from natural selection to genomic architecture of Norway spruce.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10
Typ av publikation
tidskriftsartikel (9)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (9)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ingvarsson, Pär K (9)
Robinson, Kathryn M, ... (6)
Jansson, Stefan, 195 ... (4)
Bernhardsson, Caroli ... (4)
Street, Nathaniel R. ... (3)
visa fler...
Nystedt, Björn (3)
Schiffthaler, Bastia ... (3)
Mähler, Niklas (3)
Wang, Jing (3)
Nilsson, Ove (2)
Scofield, Douglas, 1 ... (2)
Wu, Harry (1)
Garcia Gil, Rosario (1)
Hvidsten, Torgeir R. ... (1)
Johansson, Anna (1)
Grabherr, Manfred (1)
Delhomme, Nicolas (1)
Ma, Tao (1)
Sherwood, Ellen (1)
Gyllensten, Ulf (1)
Wang, Xi (1)
Zhang, Lei (1)
Johansson, Anna C. V ... (1)
Wang, Xiao-Ru, Profe ... (1)
Bhalerao, Rishikesh ... (1)
Apuli, Rami-Petteri (1)
Rendon-Anaya, Martha (1)
van der Valk, Tom (1)
Baison, John (1)
Vidalis, Amaryllis (1)
Chen, Zhiqiang (1)
Barcala, Maximiliano ... (1)
Funda, Tomas (1)
Chaudhary, Rajiv (1)
Klingberg, Adam (1)
Fundova, Irena (1)
Suontama, Mari (1)
Hallingbäck, Henrik (1)
Höppner, Marc P. (1)
Van Montagu, Marc (1)
Pakull, Birte (1)
Wilson, Jonathan (1)
Marttila, Salla (1)
Hoenicka, Hans (1)
Grimberg, Åsa (1)
Lexer, Christian (1)
Liu, Jianquan (1)
Liu, Shuyu (1)
Mao, Kangshan (1)
visa färre...
Lärosäte
Umeå universitet (10)
Sveriges Lantbruksuniversitet (8)
Uppsala universitet (3)
Stockholms universitet (1)
Språk
Engelska (10)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (10)
Lantbruksvetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy