SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ivison R.J.) ;pers:(Polehampton E. T.)"

Sökning: WFRF:(Ivison R.J.) > Polehampton E. T.

  • Resultat 1-10 av 14
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Griffin, M. J., et al. (författare)
  • The Herschel-SPIRE instrument and its in-flight performance
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L3-
  • Tidskriftsartikel (refereegranskat)abstract
    • The Spectral and Photometric Imaging REceiver (SPIRE), is the Herschel Space Observatory`s submillimetre camera and spectrometer. It contains a three-band imaging photometer operating at 250, 350 and 500 mu m, and an imaging Fourier-transform spectrometer (FTS) which covers simultaneously its whole operating range of 194-671 mu m (447-1550 GHz). The SPIRE detectors are arrays of feedhorn-coupled bolometers cooled to 0.3 K. The photometer has a field of view of 4' x 8', observed simultaneously in the three spectral bands. Its main operating mode is scan-mapping, whereby the field of view is scanned across the sky to achieve full spatial sampling and to cover large areas if desired. The spectrometer has an approximately circular field of view with a diameter of 2.6'. The spectral resolution can be adjusted between 1.2 and 25 GHz by changing the stroke length of the FTS scan mirror. Its main operating mode involves a fixed telescope pointing with multiple scans of the FTS mirror to acquire spectral data. For extended source measurements, multiple position offsets are implemented by means of an internal beam steering mirror to achieve the desired spatial sampling and by rastering of the telescope pointing to map areas larger than the field of view. The SPIRE instrument consists of a cold focal plane unit located inside the Herschel cryostat and warm electronics units, located on the spacecraft Service Module, for instrument control and data handling. Science data are transmitted to Earth with no on-board data compression, and processed by automatic pipelines to produce calibrated science products. The in-flight performance of the instrument matches or exceeds predictions based on pre-launch testing and modelling: the photometer sensitivity is comparable to or slightly better than estimated pre-launch, and the spectrometer sensitivity is also better by a factor of 1.5-2.
  •  
2.
  • Acke, B., et al. (författare)
  • Herschel images of Fomalhaut An extrasolar Kuiper belt at the height of its dynamical activity
  • 2012
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 540, s. Article Number: A125 -
  • Tidskriftsartikel (refereegranskat)abstract
    • Context. Fomalhaut is a young (2 +/- 1 x 10(8) years), nearby (7.7 pc), 2 M-circle dot star that is suspected to harbor an infant planetary system, interspersed with one or more belts of dusty debris. Aims. We present far-infrared images obtained with the Herschel Space Observatory with an angular resolution between 5.7 '' and 36.7 '' at wavelengths between 70 mu m and 500 mu m. The images show the main debris belt in great detail. Even at high spatial resolution, the belt appears smooth. The region in between the belt and the central star is not devoid of material; thermal emission is observed here as well. Also at the location of the star, excess emission is detected. We aim to construct a consistent image of the Fomalhaut system. Methods. We use a dynamical model together with radiative-transfer tools to derive the parameters of the debris disk. We include detailed models of the interaction of the dust grains with radiation, for both the radiation pressure and the temperature determination. Comparing these models to the spatially resolved temperature information contained in the images allows us to place strong constraints on the presence of grains that will be blown out of the system by radiation pressure. We use this to derive the dynamical parameters of the system. Results. The appearance of the belt points toward a remarkably active system in which dust grains are produced at a very high rate by a collisional cascade in a narrow region filled with dynamically excited planetesimals. Dust particles with sizes below the blow-out size are abundantly present. The equivalent of 2000 one-km-sized comets are destroyed every day, out of a cometary reservoir amounting to 110 Earth masses. From comparison of their scattering and thermal properties, we find evidence that the dust grains are fluffy aggregates, which indicates a cometary origin. The excess emission at the location of the star may be produced by hot dust with a range of temperatures, but may also be due to gaseous free-free emission from a stellar wind.
  •  
3.
  • Barlow, M. J., et al. (författare)
  • A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L138-
  • Tidskriftsartikel (refereegranskat)abstract
    • Using the 3.5-m Herschel Space Observatory, imaging photometry of Cas A has been obtained in six bands between 70 and 500 mu m with the PACS and SPIRE instruments, with angular resolutions ranging from 6 to 37 ''. In the outer regions of the remnant the 70-mu m PACS image resembles the 24-mu m image Spitzer image, with the emission attributed to the same warm dust component, located in the reverse shock region. At longer wavelengths, the three SPIRE bands are increasingly dominated by emission from cold interstellar dust knots and filaments, particularly across the central, western and southern parts of the remnant. Nonthermal emission from the northern part of the remnant becomes prominent at 500 mu m. We have estimated and subtracted the contributions from the nonthermal, warm dust and cold interstellar dust components. We confirm and resolve for the first time a cool (similar to 35 K) dust component, emitting at 70-160 mu m, that is located interior to the reverse shock region, with an estimated mass of 0.075 M-circle dot.
  •  
4.
  • Barlow, M. J., et al. (författare)
  • Detection of a Noble Gas Molecular Ion, (ArH+)-Ar-36, in the Crab Nebula
  • 2013
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 342:6164, s. 1343-1345
  • Tidskriftsartikel (refereegranskat)abstract
    • Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5- and 1234.6-gigahertz J = 1-0 and 2-1 rotational lines of (ArH+)-Ar-36 at several positions in the Crab Nebula, a supernova remnant known to contain both molecular hydrogen and regions of enhanced ionized argon emission. Argon-36 is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed (ArH+)-Ar-36 emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.
  •  
5.
  • Cernicharo, J., et al. (författare)
  • Detection of anhydrous hydrochloric acid, HCl, in IRC+10216 with the Herschel SPIRE and PACS spectrometers Detection of HCI in IRC+10216
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L136-
  • Tidskriftsartikel (refereegranskat)abstract
    • We report on the detection of anhydrous hydrochloric acid (hydrogen chlorine, HCl) in the carbon-rich star IRC+10216 using the spectroscopic facilities onboard the Herschel satellite. Lines from J = 1-0 up to J = 7-6 have been detected. From the observed intensities, we conclude that HCl is produced in the innermost layers of the circumstellar envelope with an abundance relative to H-2 of 5 x 10(-8) and extends until the molecules reach its photodissociation zone. Upper limits to the column densities of AlH, MgH, CaH, CuH, KH, NaH, FeH, and other diatomic hydrides have also been obtained.
  •  
6.
  • Decin, L., et al. (författare)
  • Silicon in the dust formation zone of IRC+10216
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L143-
  • Tidskriftsartikel (refereegranskat)abstract
    • The interstellar medium is enriched primarily by matter ejected from evolved low and intermediate mass stars. The outflows from these stars create a circumstellar envelope in which a rich gas-phase and dust-nucleation chemistry takes place. We observed the nearest carbon-rich evolved star, IRC + 10216, using the PACS (55-210 mu m) and SPIRE (194-672 mu m) spectrometers on board Herschel. We find several tens of lines from SiS and SiO, including lines from the v = 1 vibrational level. For SiS these transitions range up to J = 124-123, corresponding to energies around 6700 K, while the highest detectable transition is J = 90-89 for SiO, which corresponds to an energy around 8400 K. Both species trace the dust formation zone of IRC + 10216, and the broad energy ranges involved in their detected transitions permit us to derive the physical properties of the gas and the particular zone in which each species has been formed. This allows us to check the accuracy of chemical thermodynamical equilibrium models and the suggested depletion of SiS and SiO due to accretion onto dust grains.
  •  
7.
  • Decin, L., et al. (författare)
  • Warm water vapour in the sooty outflow from a luminous carbon star
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 467:7311, s. 64-67
  • Tidskriftsartikel (refereegranskat)abstract
    • The detection(1) of circumstellar water vapour around the ageing carbon star IRC + 10216 challenged the current understanding of chemistry in old stars, because water was predicted(2) to be almost absent in carbon-rich stars. Several explanations for the water were postulated, including the vaporization of icy bodies (comets or dwarf planets) in orbit around the star(1), grain surface reactions(3), and photochemistry in the outer circumstellar envelope(4). With a single water line detected so far from this one carbon-rich evolved star, it is difficult to discriminate between the different mechanisms proposed. Here we report the detection of dozens of water vapour lines in the far-infrared and sub-millimetre spectrum of IRC + 10216 using the Herschel satellite(5). This includes some high-excitation lines with energies corresponding to similar to 1,000 K, which can be explained only if water is present in the warm inner sooty region of the envelope. A plausible explanation for the warm water appears to be the penetration of ultraviolet photons deep into a clumpy circumstellar envelope. This mechanism also triggers the formation of other molecules, such as ammonia, whose observed abundances(6) are much higher than hitherto predicted(7).
  •  
8.
  • Royer, P., et al. (författare)
  • PACS and SPIRE spectroscopy of the red supergiant VY CMa
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518, s. L145-
  • Tidskriftsartikel (refereegranskat)abstract
    • With a luminosity > 10(5) L-circle dot and a mass-loss rate of similar to 2 x 10(-4) M-circle dot yr(-1), the red supergiant VY CMa truly is a spectacular object. Because of its extreme evolutionary state, it could explode as supernova any time. Studying its circumstellar material, into which the supernova blast will run, provides interesting constraints on supernova explosions and on the rich chemistry taking place in such complex circumstellar envelopes. We have obtained spectroscopy of VY CMa over the full wavelength range offered by the PACS and SPIRE instruments of Herschel, i.e. 55-672 micron. The observations show the spectral fingerprints of more than 900 spectral lines, of which more than half belong to water. In total, we have identified 13 different molecules and some of their isotopologues. A first analysis shows that water is abundantly present, with an ortho-to-para ratio as low as similar to 1.3:1, and that chemical non-equilibrium processes determine the abundance fractions in the inner envelope.
  •  
9.
  • Sibthorpe, B., et al. (författare)
  • The Vega debris disc: A view from Herschel
  • 2010
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 518:Article Number: L130
  • Tidskriftsartikel (refereegranskat)abstract
    • We present five band imaging of the Vega debris disc obtained using the Herschel Space Observatory. These data span a wavelength range of 70-500 mu m with full-width half-maximum angular resolutions of 5.6-36.9 ''. The disc is well resolved in all bands, with the ring structure visible at 70 and 160 mu m. Radial profiles of the disc surface brightness are produced, and a disc radius of 11 '' (similar to 85AU) is determined. The disc is seen to have a smooth structure thoughout the entire wavelength range, suggesting that the disc is in a steady state, rather than being an ephemeral structure caused by the recent collision of two large planetesimals.
  •  
10.
  • Van de Steene, G. C., et al. (författare)
  • Herschel imaging of the dust in the Helix nebula (NGC 7293)
  • 2015
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 574
  • Tidskriftsartikel (refereegranskat)abstract
    • Aims. In our series of papers presenting the Herschel imaging of evolved planetary nebulae, we present images of the dust distribution in the Helix nebula (NGC 7293). Methods. Images at 70, 160, 250, 350, and 500 mu m were obtained with the PACS and SPIRE instruments on board the Herschel satellite. Results. The broadband maps show the dust distribution over the main Helix nebula to be u npy and predominantly present in the barrel wall. We determined the spectral energy distribution of the main nebula in a consistent way using Herschel. IRAS. and Planck flux values, The emissivity index of beta = 0.99 +/- 0.09, in combination with the carbon rich molecular chemistry of the nebula, indicates that the dust consists mainly of amorphous carbon. The dust excess emission from the central star disk is detected at 70 pm and the flux measurement agrees with previous measurement. We present the temperature and dust column density maps. The total dust mass across the Helix nebula (without its halo) is determined to be 3.5 x 10(-3) M-circle dot at a distance of 216 pc. The temperature map shows dust temperatures between 22 K and 42 K, which is similar to the kinetic temperature of the molecular gas, confirming that the dust and gas co exist in high density clumps. Archived images are used to compare the location of the dust emission in the far infrared (Herschel) with the ionized (GALEX and H-beta) and molecular (H-2) component. The different emission components are consistent with the Helix consisting of a thick walled barrel-like structure inclined to the line of sight. The radiation field decreases rapidly through the barrel wall.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 14

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy