SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jögi Rain) ;pers:(Heinrich Joachim)"

Search: WFRF:(Jögi Rain) > Heinrich Joachim

  • Result 1-7 of 7
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Carsin, Anne-Elie, et al. (author)
  • Regular Physical Activity Levels and Incidence of Restrictive Spirometry Pattern : A Longitudinal Analysis of Two Population-based Cohorts
  • 2020
  • In: American Journal of Epidemiology. - : Oxford University Press. - 0002-9262 .- 1476-6256. ; 189:12, s. 1521-1528
  • Journal article (peer-reviewed)abstract
    • We estimated the association between regular physical activity and the incidence of restrictive spirometry pattern. Forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), and physical activity were assessed in 2 population-based European cohorts (European Community Respiratory Health Survey: n = 2,757, aged 39–67 years; and Swiss Study on Air Pollution and Lung and Heart Diseases in Adults: n = 2,610, aged 36–82 years) first in 2000–2002 and again approximately 10 years later (2010–2013). Subjects with restrictive or obstructive spirometry pattern at baseline were excluded. We assessed the association of being active at baseline (defined as being physically active at least 2–3 times/week for ≥1 hour) with restrictive spirometry pattern at follow-up (defined as a postbronchodilation FEV1/FVC ratio of at least the lower limit of normal and FVC of <80% predicted) using modified Poisson regression, adjusting for relevant confounders. After 10 years of follow-up, 3.3% of participants had developed restrictive spirometry pattern. Being physically active was associated with a lower risk of developing this phenotype (relative risk = 0.76, 95% confidence interval: 0.59, 0.98). This association was stronger among those who were overweight and obese than among those of normal weight (P for interaction = 0.06). In 2 large European studies, adults practicing regular physical activity were at lower risk of developing restrictive spirometry pattern over 10 years.
  •  
2.
  • Fuertes, Elaine, et al. (author)
  • The role of C-reactive protein levels on the association of physical activity with lung function in adults
  • 2019
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 14:9
  • Journal article (peer-reviewed)abstract
    • OBJECTIVE: Regular physical activity may be associated with improved lung function via reduced systemic inflammation, although studies exploring this mechanism are rare. We evaluated the role of C-reactive protein in blood, which is a common marker of systemic inflammation, on the association of physical activity with forced expiratory volume in one second and forced vital capacity.METHODS: Cross-sectional data on spirometry, C-reactive protein levels and self-reported physical activity (yes/no; ≥2 times and ≥1hr per week of vigorous physical activity) were available in the European Community Respiratory Health Survey (N = 2347 adults, 49.3% male, 28-56 years-old). A subsample was also assessed 10 years later using the International Physical Activity Questionnaire, and tertiles of Metabolic Equivalent of Task-minutes per week spent in vigorous, moderate and walking activities were calculated (N = 671, 49.6% male, 40-67 years-old). Adjusted cross-sectional mixed linear regression models and the "mediate" package in "R" were used to assess the presence of mediation.RESULTS: Despite positive significant associations between nearly all physical activity metrics with forced expiratory volume in one second and forced vital capacity, there was no evidence that C-reactive protein levels played a role. An influence of C-reactive protein levels was only apparent in the smaller subsample when comparing the medium to low tertiles of moderate activity (mean difference [95% CIs]: 21.1ml [5.2, 41.9] for forced expiratory volume in one second and 17.3ml [2.6, 38.0] for forced vital capacity).CONCLUSIONS: In a population of adults, we found no consistent evidence that the association of physical activity with forced expiratory volume in one second or forced vital capacity is influenced by the level of C-reactive protein in blood.
  •  
3.
  • Johannessen, Ane, et al. (author)
  • Long-term air pollution exposure is associated with sick leave 20 years later
  • 2018
  • In: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 52
  • Journal article (other academic/artistic)abstract
    • Background: Little is known on outdoor air pollution in a long-term perspective and societal costs such as sick leave. In the Nordic countries, recent pollution health impact assessments have had to rely on outdated studies.Aims: To investigate if air pollution exposure is associated with sick leave 20 years later.Methods: We analysed self-reported sick leave (all-cause and respiratory) in 7 466 subjects from Bergen, Gothenburg, Umea, Uppsala in the RHINE3 study in 2010-12. Home addresses were geocoded and linked to annual average concentrations of PM2.5, PM10 and NO2 at RHINE3, 10 years earlier and 20 years earlier, using existing land-use regression (LUR) models. We performed multilevel logistic regression clustered by centre, and adjusted for sex, smoking, education and previous health-related workplace change.Results: Age range in RHINE3 was 40-66 yrs, 34% and 4% reported all-cause and respiratory sick leave during the last year. In the adjusted analyses all-cause sick leave was associated with PM2.520 years earlier (OR per interquartile range (IQR) difference (2.6 µg/m³) 1.12 (95%CI 1.01, 1.24)), and borderline with NO2 (OR per IQR diff (8.1 µg/m³) 1.09 (95%CI 0.99, 1.19)). Respiratory sick leave was associated with PM10 20 years earlier (OR per IQR diff (3.92 µg/m³) 1.54 (95%CI 1.06, 2.25)), and borderline with PM2.5 (OR per IQR diff 1.31 (95%CI 0.97, 1.76)). Pollution exposures at present as well as 10 years earlier were not significantly associated with sick leave.Conclusions: Air pollution exposure in a general population is associated with sick leave in a 20-year perspective. Our findings suggest that even low air pollution levels such as in Northern Europe have societal costs over time.
  •  
4.
  • Kirkeleit, Jorunn, et al. (author)
  • Early life exposures contributing to accelerated lung function decline in adulthood – a follow-up study of 11,000 adults from the general population
  • 2023
  • In: eClinicalMedicine. - : Elsevier. - 2589-5370. ; 66
  • Journal article (peer-reviewed)abstract
    • Background: We aimed to assess whether exposure to risk factors in early life from conception to puberty continue to contribute to lung function decline later in life by using a pooled cohort comprising approx. 11,000 adults followed for more than 20 years and with up to three lung function measurements. Methods: Participants (20–68 years) in the ECRHS and NFBC1966 cohort studies followed in the periods 1991–2013 and 1997–2013, respectively, were included. Mean annual decline in maximum forced expired volume in 1 s (FEV1) and forced vital capacity (FVC) were main outcomes. Associations between early life risk factors and change in lung function were estimated using mixed effects linear models adjusted for sex, age, FEV1, FVC and height at baseline, accounting for personal smoking. Findings: Decline in lung function was accelerated in participants with mothers that smoked during pregnancy (FEV1 2.3 ml/year; 95% CI: 0.7, 3.8) (FVC 2.2 ml/year; 0.2, 4.2), with asthmatic mothers (FEV1 2.6 ml/year; 0.9, 4.4) (FEV1/FVC 0.04 per year; 0.04, 0.7) and asthmatic fathers (FVC 2.7 ml/year; 0.5, 5.0), and in women with early menarche (FVC 2.4 ml/year; 0.4, 4.4). Personal smoking of 10 pack-years contributed to a decline of 2.1 ml/year for FEV1 (1.8, 2.4) and 1.7 ml/year for FVC (1.3, 2.1). Severe respiratory infections in early childhood were associated with accelerated decline among ever-smokers. No effect-modification by personal smoking, asthma symptoms, sex or cohort was found. Interpretation: Mothers’ smoking during pregnancy, parental asthma and early menarche may contribute to a decline of FEV1 and FVC later in life comparable to smoking 10 pack-years. Funding: European Union's Horizon 2020; Research Council of Norway; Academy of Finland; University Hospital Oulu; European Regional Development Fund; Spanish Ministry of Science and Innovation; Generalitat de Catalunya.
  •  
5.
  • Kuiper, Ingrid Nordeide, et al. (author)
  • Lung health in adulthood after childhood exposure to air pollution and greenness
  • 2018
  • In: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 52
  • Journal article (other academic/artistic)abstract
    • Background: Little is known on childhood exposure to air pollution and adult chronic respiratory outcomes.Aim: To investigate associations between air pollution and greenness in childhood and adult lung health.Methods: In selected centres of the RHINESSA study (age 18-52) we analysed the outcomes respiratory symptoms (≥3 symptoms), severe wheeze (wheeze last year with breathlessness, no cold) and late onset asthma (>10 years). We calculated mean annual exposures of PM2.5, PM10, NO2 (µg/m³) and greenness (Normalized Difference Vegetation Index, 100m buffer) from offspring's birth till age 18, categorised into mean exposure <10 years and 11-18 years. We performed multilevel logistic regression clustered by family, stratified by centre and adjusted for childhood passive smoke and parental asthma.Results: 12% had ≥3 respiratory symptoms, 7.7% severe wheeze, and 9.4% late onset asthma. Overall estimates: greenness was associated with less respiratory symptoms, PM2.5 and NO2 with more late onset asthma. Exposure <10 years: Greenness was associated with less wheeze in Tartu (OR 0.29, 95%CI 0.11-0.73). PM2.5 (OR 1.22, 95%CI 1.00-1.48) and NO2 (OR 1.06, 95%CI 1.01-1.11) were risk factors for late onset asthma in Bergen. PM10 was a risk factor for respiratory symptoms (OR 1.21, 95%CI 1.04-1.41) in Uppsala and late onset asthma (OR 1.23, 95%CI 1.02-1.45) in Bergen. Exposure 11-18 years: Greenness was protective for respiratory symptoms (OR 0.29, 95%CI 0.10-0.86) and wheeze (OR 0.39, 95%CI 0.19-0.80) in Tartu.Conclusions: Childhood exposure to greenness was associated with less respiratory symptoms, while air pollutants were associated with more respiratory symptoms (some centres) and late onset asthma.
  •  
6.
  •  
7.
  • Triebner, Kai, et al. (author)
  • Residential surrounding greenspace and age at menopause : A 20-year European study (ECRHS)
  • 2019
  • In: Environment International. - : Elsevier. - 0160-4120 .- 1873-6750. ; 132
  • Journal article (peer-reviewed)abstract
    • BACKGROUND: Menopause is associated with a number of adverse health effects and its timing has been reported to be influenced by several lifestyle factors. Whether greenspace exposure is associated with age at menopause has not yet been investigated.OBJECTIVE: To investigate whether residential surrounding greenspace is associated with age at menopause and thus reproductive aging.METHODS: This longitudinal study was based on the 20-year follow-up of 1955 aging women from a large, population-based European cohort (ECRHS). Residential surrounding greenspace was abstracted as the average of satellite-based Normalized Difference Vegetation Index (NDVI) across a circular buffer of 300 m around the residential addresses of each participant during the course of the study. We applied mixed effects Cox models with centre as random effect, menopause as the survival object, age as time indicator and residential surrounding greenspace as time-varying predictor. All models were adjusted for smoking habit, body mass index, parity, age at menarche, ever-use of contraception and age at completed full-time education as socio-economic proxy.RESULTS: An increase of one interquartile range of residential surrounding greenspace was associated with a 13% lower risk of being menopausal (Hazard Ratio: 0.87, 95% Confidence Interval: 0.79-0.95). Correspondingly the predicted median age at menopause was 1.4 years older in the highest compared to the lowest NDVI quartile. Results remained stable after additional adjustment for air pollution and traffic related noise amongst others.CONCLUSIONS: Living in greener neighbourhoods is associated with older age at menopause and might slow reproductive aging. These are novel findings with broad implications. Further studies are needed to see whether our findings can be replicated in different populations and to explore the potential mechanisms underlying this association.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-7 of 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view