SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobsen S) ;mspu:(researchreview)"

Sökning: WFRF:(Jacobsen S) > Forskningsöversikt

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S., et al. (författare)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Forskningsöversikt (refereegranskat)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Schael, S, et al. (författare)
  • Precision electroweak measurements on the Z resonance
  • 2006
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 427:5-6, s. 257-454
  • Forskningsöversikt (refereegranskat)abstract
    • We report on the final electroweak measurements performed with data taken at the Z resonance by the experiments operating at the electron-positron colliders SLC and LEP. The data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL experiments at LEP, and 600 thousand Z decays by the SLID experiment using a polarised beam at SLC. The measurements include cross-sections, forward-backward asymmetries and polarised asymmetries. The mass and width of the Z boson, m(Z) and Gamma(Z), and its couplings to fermions, for example the p parameter and the effective electroweak mixing angle for leptons, are precisely measured: m(Z) = 91.1875 +/- 0.0021 GeV, Gamma(Z) = 2.4952 +/- 0.0023 GeV, rho(l) = 1.0050 +/- 0.0010, sin(2)theta(eff)(lept) = 0.23153 +/- 0.00016. The number of light neutrino species is determined to be 2.9840 +/- 0.0082, in agreement with the three observed generations of fundamental fermions. The results are compared to the predictions of the Standard Model (SM). At the Z-pole, electroweak radiative corrections beyond the running of the QED and QCD coupling constants are observed with a significance of five standard deviations, and in agreement with the Standard Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark production shows the largest difference with respect to its SM expectation, at the level of 2.8 standard deviations. Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole data are also used to predict the mass of the top quark, m(t) = 173(+10)(+13) GeV, and the mass of the W boson, m(W) = 80.363 +/- 0.032 GeV. These indirect constraints are compared to the direct measurements, providing a stringent test of the SM. Using in addition the direct measurements of m(t) and m(W), the mass of the as yet unobserved SM Higgs boson is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at 95% confidence level. (c) 2006 Elsevier B.V. All rights reserved.
  •  
3.
  • 2018
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 58:1
  • Forskningsöversikt (refereegranskat)
  •  
4.
  •  
5.
  • Meyer, H.F., et al. (författare)
  • Overview of physics studies on ASDEX Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The ASDEX Upgrade (AUG) programme, jointly run with the EUROfusion MST1 task force, continues to significantly enhance the physics base of ITER and DEMO. Here, the full tungsten wall is a key asset for extrapolating to future devices. The high overall heating power, flexible heating mix and comprehensive diagnostic set allows studies ranging from mimicking the scrape-off-layer and divertor conditions of ITER and DEMO at high density to fully non-inductive operation (q 95 = 5.5, ) at low density. Higher installed electron cyclotron resonance heating power 6 MW, new diagnostics and improved analysis techniques have further enhanced the capabilities of AUG. Stable high-density H-modes with MW m-1 with fully detached strike-points have been demonstrated. The ballooning instability close to the separatrix has been identified as a potential cause leading to the H-mode density limit and is also found to play an important role for the access to small edge-localized modes (ELMs). Density limit disruptions have been successfully avoided using a path-oriented approach to disruption handling and progress has been made in understanding the dissipation and avoidance of runaway electron beams. ELM suppression with resonant magnetic perturbations is now routinely achieved reaching transiently . This gives new insight into the field penetration physics, in particular with respect to plasma flows. Modelling agrees well with plasma response measurements and a helically localised ballooning structure observed prior to the ELM is evidence for the changed edge stability due to the magnetic perturbations. The impact of 3D perturbations on heat load patterns and fast-ion losses have been further elaborated. Progress has also been made in understanding the ELM cycle itself. Here, new fast measurements of and E r allow for inter ELM transport analysis confirming that E r is dominated by the diamagnetic term even for fast timescales. New analysis techniques allow detailed comparison of the ELM crash and are in good agreement with nonlinear MHD modelling. The observation of accelerated ions during the ELM crash can be seen as evidence for the reconnection during the ELM. As type-I ELMs (even mitigated) are likely not a viable operational regime in DEMO studies of 'natural' no ELM regimes have been extended. Stable I-modes up to have been characterised using -feedback. Core physics has been advanced by more detailed characterisation of the turbulence with new measurements such as the eddy tilt angle - measured for the first time - or the cross-phase angle of and fluctuations. These new data put strong constraints on gyro-kinetic turbulence modelling. In addition, carefully executed studies in different main species (H, D and He) and with different heating mixes highlight the importance of the collisional energy exchange for interpreting energy confinement. A new regime with a hollow profile now gives access to regimes mimicking aspects of burning plasma conditions and lead to nonlinear interactions of energetic particle modes despite the sub-Alfvénic beam energy. This will help to validate the fast-ion codes for predicting ITER and DEMO.
  •  
6.
  • Harrison, J.R., et al. (författare)
  • Overview of new MAST physics in anticipation of first results from MAST Upgrade
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • The mega amp spherical tokamak (MAST) was a low aspect ratio device (R/a = 0.85/0.65 ∼ 1.3) with similar poloidal cross-section to other medium-size tokamaks. The physics programme concentrates on addressing key physics issues for the operation of ITER, design of DEMO and future spherical tokamaks by utilising high resolution diagnostic measurements closely coupled with theory and modelling to significantly advance our understanding. An empirical scaling of the energy confinement time that favours higher power, lower collisionality devices is consistent with gyrokinetic modelling of electron scale turbulence. Measurements of ion scale turbulence with beam emission spectroscopy and gyrokinetic modelling in up-down symmetric plasmas find that the symmetry of the turbulence is broken by flow shear. Near the non-linear stability threshold, flow shear tilts the density fluctuation correlation function and skews the fluctuation amplitude distribution. Results from fast particle physics studies include the observation that sawteeth are found to redistribute passing and trapped fast particles injected from neutral beam injectors in equal measure, suggesting that resonances between the m = 1 perturbation and the fast ion orbits may be playing a dominant role in the fast ion transport. Measured D-D fusion products from a neutron camera and a charged fusion product detector are 40% lower than predictions from TRANSP/NUBEAM, highlighting possible deficiencies in the guiding centre approximation. Modelling of fast ion losses in the presence of resonant magnetic perturbations (RMPs) can reproduce trends observed in experiments when the plasma response and charge-exchange losses are accounted for. Measurements with a neutral particle analyser during merging-compression start-up indicate the acceleration of ions and electrons. Transport at the plasma edge has been improved through reciprocating probe measurements that have characterised a geodesic acoustic mode at the edge of an ohmic L-mode plasma and particle-in-cell modelling has improved the interpretation of plasma potential estimates from ball-pen probes. The application of RMPs leads to a reduction in particle confinement in L-mode and H-mode and an increase in the core ionization source. The ejection of secondary filaments following type-I ELMs correlates with interactions with surfaces near the X-point. Simulations of the interaction between pairs of filaments in the scrape-off layer suggest this results in modest changes to their velocity, and in most cases can be treated as moving independently. A stochastic model of scrape-off layer profile formation based on the superposition of non-interacting filaments is in good agreement with measured time-average profiles. Transport in the divertor has been improved through fast camera imaging, indicating the presence of a quiescent region devoid of filament near the X-point, extending from the separatrix to ψ n ∼ 1.02. Simulations of turbulent transport in the divertor show that the angle between the divertor leg on the curvature vector strongly influences transport into the private flux region via the interchange mechanism. Coherence imaging measurements show counter-streaming flows of impurities due to gas puffing increasing the pressure on field lines where the gas is ionised. MAST Upgrade is based on the original MAST device, with substantially improved capabilities to operate with a Super-X divertor to test extended divertor leg concepts. SOLPS-ITER modelling predicts the detachment threshold will be reduced by more than a factor of 2, in terms of upstream density, in the Super-X compared with a conventional configuration and that the radiation front movement is passively stabilised before it reaches the X-point. 1D fluid modelling reveals the key role of momentum and power loss mechanisms in governing detachment onset and evolution. Analytic modelling indicates that long legs placed at large major radius, or equivalently low at the target compared with the X-point are more amenable to external control. With MAST Upgrade experiments expected in 2019, a thorough characterisation of the sources of the intrinsic error field has been carried out and a mitigation strategy developed.
  •  
7.
  • Tobias, Deirdre K, et al. (författare)
  • Second international consensus report on gaps and opportunities for the clinical translation of precision diabetes medicine
  • 2023
  • Ingår i: Nature Medicine. - 1546-170X. ; 29:10, s. 2438-2457
  • Forskningsöversikt (refereegranskat)abstract
    • Precision medicine is part of the logical evolution of contemporary evidence-based medicine that seeks to reduce errors and optimize outcomes when making medical decisions and health recommendations. Diabetes affects hundreds of millions of people worldwide, many of whom will develop life-threatening complications and die prematurely. Precision medicine can potentially address this enormous problem by accounting for heterogeneity in the etiology, clinical presentation and pathogenesis of common forms of diabetes and risks of complications. This second international consensus report on precision diabetes medicine summarizes the findings from a systematic evidence review across the key pillars of precision medicine (prevention, diagnosis, treatment, prognosis) in four recognized forms of diabetes (monogenic, gestational, type 1, type 2). These reviews address key questions about the translation of precision medicine research into practice. Although not complete, owing to the vast literature on this topic, they revealed opportunities for the immediate or near-term clinical implementation of precision diabetes medicine; furthermore, we expose important gaps in knowledge, focusing on the need to obtain new clinically relevant evidence. Gaps include the need for common standards for clinical readiness, including consideration of cost-effectiveness, health equity, predictive accuracy, liability and accessibility. Key milestones are outlined for the broad clinical implementation of precision diabetes medicine.
  •  
8.
  • Kalter, J., et al. (författare)
  • Effects and moderators of psychosocial interventions on quality of life, and emotional and social function in patients with cancer : An individual patient data meta-analysis of 22 RCTs
  • 2018
  • Ingår i: Psycho-Oncology. - : WILEY. - 1057-9249 .- 1099-1611. ; 27:4, s. 1150-1161
  • Forskningsöversikt (refereegranskat)abstract
    • Objective: This individual patient data (IPD) meta-analysis aimed to evaluate the effects of psychosocial interventions (PSI) on quality of life (QoL), emotional function (EF), and social function (SF) in patients with cancer, and to study moderator effects of demographic, clinical, personal, and intervention-related characteristics. Methods: Relevant studies were identified via literature searches in 4 databases. We pooled IPD from 22 (n = 4217) of 61 eligible randomized controlled trials. Linear mixed-effect model analyses were used to study intervention effects on the post-intervention values of QoL, EF, and SF (z-scores), adjusting for baseline values, age, and cancer type. We studied moderator effects by testing interactions with the intervention for demographic, clinical, personal, and intervention-related characteristics, and conducted subsequent stratified analyses for significant moderator variables.Results: PSI significantly improved QoL (=0.14,95%CI=0.06;0.21), EF ( beta = 0.13,95%CI = 0.05;0.20), and SF (beta = 0.10,95%CI = 0.03;0.18). Significant differences in effects of different types of PSI were found, with largest effects of psychotherapy. The effects of coping skills training were moderated by age, treatment type, and targeted interventions. Effects of psychotherapy on EF may be moderated by cancer type, but these analyses were based on 2 randomized controlled trials with small sample sizes of some cancer types. Conclusions: PSI significantly improved QoL, EF, and SF, with small overall effects. However, the effects differed by several demographic, clinical, personal, and intervention-related characteristics. Our study highlights the beneficial effects of coping skills training in patients treated with chemotherapy, the importance of targeted interventions, and the need of developing interventions tailored to the specific needs of elderly patients.
  •  
9.
  • Buffart, L. M., et al. (författare)
  • Effects and moderators of coping skills training on symptoms of depression and anxiety in patients with cancer : Aggregate data and individual patient data meta-analyses
  • 2020
  • Ingår i: Clinical Psychology Review. - : Elsevier BV. - 0272-7358 .- 1873-7811. ; 80
  • Forskningsöversikt (refereegranskat)abstract
    • PURPOSE: This study evaluated the effects of coping skills training (CST) on symptoms of depression and anxiety in cancer patients, and investigated moderators of the effects.METHODS: Overall effects and intervention-related moderators were studied in meta-analyses of pooled aggregate data from 38 randomized controlled trials (RCTs). Patient-related moderators were examined using linear mixed-effect models with interaction tests on pooled individual patient data (n = 1953) from 15 of the RCTs.RESULTS: CST had a statistically significant but small effect on depression (g = -0.31,95% confidence interval (CI) = -0.40;-0.22) and anxiety (g = -0.32,95%CI = -0.41;-0.24) symptoms. Effects on depression symptoms were significantly larger for interventions delivered face-to-face (p = .003), led by a psychologist (p = .02) and targeted to patients with psychological distress (p = .002). Significantly larger reductions in anxiety symptoms were found in younger patients (pinteraction < 0.025), with the largest reductions in patients <50 years (β = -0.31,95%CI = -0.44;-0.18) and no significant effects in patients ≥70 years. Effects of CST on depression (β = -0.16,95%CI = -0.25;-0.07) and anxiety (β = -0.24,95%CI = -0.33;-0.14) symptoms were significant in patients who received chemotherapy but not in patients who did not (pinteraction < 0.05).CONCLUSIONS: CST significantly reduced symptoms of depression and anxiety in cancer patients, and particularly when delivered face-to-face, provided by a psychologist, targeted to patients with psychological distress, and given to patients who were younger and received chemotherapy.
  •  
10.
  • Abrahams, Harriët J. G., et al. (författare)
  • Moderators of the effect of psychosocial interventions on fatigue in women with breast cancer and men with prostate cancer : Individual patient data meta-analyses
  • 2020
  • Ingår i: Psycho-Oncology. - : Wiley. - 1057-9249 .- 1099-1611. ; 29:11, s. 1772-1785
  • Forskningsöversikt (refereegranskat)abstract
    • ObjectivePsychosocial interventions can reduce cancer‐related fatigue effectively. However, it is still unclear if intervention effects differ across subgroups of patients. These meta‐analyses aimed at evaluating moderator effects of (a) sociodemographic characteristics, (b) clinical characteristics, (c) baseline levels of fatigue and other symptoms, and (d) intervention‐related characteristics on the effect of psychosocial interventions on cancer‐related fatigue in patients with non‐metastatic breast and prostate cancer.MethodsData were retrieved from the Predicting OptimaL cAncer RehabIlitation and Supportive care (POLARIS) consortium. Potential moderators were studied with meta‐analyses of pooled individual patient data from 14 randomized controlled trials through linear mixed‐effects models with interaction tests. The analyses were conducted separately in patients with breast (n = 1091) and prostate cancer (n = 1008).ResultsStatistically significant, small overall effects of psychosocial interventions on fatigue were found (breast cancer: β = −0.19 [95% confidence interval (95%CI) = −0.30; −0.08]; prostate cancer: β = −0.11 [95%CI = −0.21; −0.00]). In both patient groups, intervention effects did not differ significantly by sociodemographic or clinical characteristics, nor by baseline levels of fatigue or pain. For intervention‐related moderators (only tested among women with breast cancer), statistically significant larger effects were found for cognitive behavioral therapy as intervention strategy (β = −0.27 [95%CI = −0.40; −0.15]), fatigue‐specific interventions (β = −0.48 [95%CI = −0.79; −0.18]), and interventions that only targeted patients with clinically relevant fatigue (β = −0.85 [95%CI = −1.40; −0.30]).ConclusionsOur findings did not provide evidence that any selected demographic or clinical characteristic, or baseline levels of fatigue or pain, moderated effects of psychosocial interventions on fatigue. A specific focus on decreasing fatigue seems beneficial for patients with breast cancer with clinically relevant fatigue.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy