SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobsson B) ;lar1:(mau)"

Sökning: WFRF:(Jacobsson B) > Malmö universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Anders, Halldin, et al. (författare)
  • Improved osseointegration and interlocking capacity with dual acid treated implants: a rabbit study.
  • 2016
  • Ingår i: Clinical Oral Implants Research. - : Wiley. - 0905-7161 .- 1600-0501. ; 27, s. 22-30
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim To investigate how osseointegration is affected by different nano- and microstructures. The hypothesis was that the surface structure created by dual acid treatment (AT-1), applied on a reduced topography, might achieve equivalent biomechanical performance as a rougher surface treated with hydrofluoric acid (HF). Materials and methods In a preclinical rabbit study, three groups (I, II, and III) comprised of test and control implants were inserted in 30 rabbits. The microstructures of the test implants were either produced by blasting with coarse (I) or fine (II) titanium particles or remained turned (III). All test implants were thereafter treated with AT-1 resulting in three different test surfaces. The microstructure of the control implants was produced by blasting with coarse titanium particles thereafter treated with HF. The surface topography was characterized by interferometry. Biomechanical (removal torque) and histomorphometric (bone–implant contact; bone area) performances were measured after 4 or 12 weeks of healing. Results Removal torque measurement demonstrated that test implants in group I had an enhanced biomechanical performance compared to that of the control despite similar surface roughness value (Sa). At 4 weeks of healing, group II test implants showed equivalent biomechanical performance to that of the control, despite a decreased Sa value. Group III test implants showed decreased biomechanical performance to that of the control. Conclusions: The results of the present study suggest that nano- and microstructure alteration by AT-1 on a blasted implant might enhance the initial biomechanical performance, while for longer healing time, the surface interlocking capacity seems to be more important.
  •  
2.
  • Halldin, Anders, et al. (författare)
  • Implant Stability and Bone Remodeling after 3 and 13 Days of Implantation with an Initial Static Strain
  • 2014
  • Ingår i: Clinical Implant Dentistry and Related Research. - : John Wiley & Sons. - 1523-0899 .- 1708-8208. ; 16:3, s. 383-393
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective Bone is constantly exposed to dynamic and static loads, which induce both dynamic and static bone strains. Although numerous studies exist on the effect of dynamic strain on implant stability and bone remodeling, the effect of static strain needs further investigation. Therefore, the effect of two different static bone strain levels on implant stability and bone remodeling at two different implantation times was investigated in a rabbit model. Methods Two different test implants with a diametrical expansion of 0.15 mm (group A) and 0.05 mm (group B) creating initial static bone strains of 0.045 and 0.015, respectively. The implants were inserted in the proximal tibial metaphysis of 24 rabbits to observe the biological response at implant removal. Both groups were compared to control implants (group C), with no diametrical increase. The insertion torque (ITQ) was measured to represent the initial stability and the removal torque (RTQ) was measured to analyze the effect that static strain had on implant stability and bone remodeling after 3 and 13 days of implantation time. Results The ITQ and the RTQ values for test implants were significantly higher for both implantation times compared to control implants. A selection of histology samples was prepared to measure bone to implant contact (BIC). There was a tendency that the BIC values for test implants were higher compared to control implants. Conclusion These findings suggest that increased static bone strain creates higher implant stability at the time of insertion, and this increased stability is maintained throughout the observed period.
  •  
3.
  • Halldin, Anders, et al. (författare)
  • The effect of static bone strain on implant stability of bone remodelling
  • 2011
  • Ingår i: Bone. - : Elsevier. - 8756-3282 .- 1873-2763. ; 49:4, s. 783-789
  • Tidskriftsartikel (refereegranskat)abstract
    • Bone remodeling is a process involving both dynamic and static bone strain. Although there exist numerous studies on the effect of dynamic strain on implant stability and bone remodeling, the effect of static strain has yet to be clarified. Hence, for this purpose, the effect of static bone strain on implant stability and bone remodeling was investigated in rabbits. Based on Finite Element (FE) simulation two different test implants, with a diametrical increase of 0.15 mm (group A) and 0.05 mm (group B) creating static strains in the bone of 0.045 and 0.015 respectively, were inserted in the femur (group A) and the proximal tibia metaphysis (groups A and B respectively) of 14 rabbits to observe the biological response. Both groups were compared to control implants, with no diametrical increase (group C), which were placed in the opposite leg. At the time of surgery, the insertion torque (ITQ) was measured to represent the initial stability. The rabbits were euthanized after 24 days and the removal torque (RTQ) was measured to analyze the effect on implant stability and bone remodeling. The mean ITQ value was significantly higher for both groups A and B compared to group C regardless of the bone type. The RTQ value was significantly higher in tibia for groups A and B compared to group C while group A placed in femur presented no significant difference compared to group C. The results suggest that increased static strain in the bone not only creates higher implant stability at the time of insertion, but also generates increased implant stability throughout the observation period.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy