SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jahanshad Neda) ;pers:(Ching Christopher R K)"

Sökning: WFRF:(Jahanshad Neda) > Ching Christopher R K

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belov, Vladimir, et al. (författare)
  • Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
  • 2024
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.
  •  
2.
  • Chye, Yann, et al. (författare)
  • Subcortical surface morphometry in substance dependence : An ENIGMA addiction working group study
  • 2020
  • Ingår i: Addiction Biology. - : WILEY. - 1355-6215 .- 1369-1600. ; 25:6
  • Tidskriftsartikel (refereegranskat)abstract
    • While imaging studies have demonstrated volumetric differences in subcortical structures associated with dependence on various abused substances, findings to date have not been wholly consistent. Moreover, most studies have not compared brain morphology across those dependent on different substances of abuse to identify substance-specific and substance-general dependence effects. By pooling large multinational datasets from 33 imaging sites, this study examined subcortical surface morphology in 1628 nondependent controls and 2277 individuals with dependence on alcohol, nicotine, cocaine, methamphetamine, and/or cannabis. Subcortical structures were defined by FreeSurfer segmentation and converted to a mesh surface to extract two vertex-level metrics-the radial distance (RD) of the structure surface from a medial curve and the log of the Jacobian determinant (JD)-that, respectively, describe local thickness and surface area dilation/contraction. Mega-analyses were performed on measures of RD and JD to test for the main effect of substance dependence, controlling for age, sex, intracranial volume, and imaging site. Widespread differences between dependent users and nondependent controls were found across subcortical structures, driven primarily by users dependent on alcohol. Alcohol dependence was associated with localized lower RD and JD across most structures, with the strongest effects in the hippocampus, thalamus, putamen, and amygdala. Meanwhile, nicotine use was associated with greater RD and JD relative to nonsmokers in multiple regions, with the strongest effects in the bilateral hippocampus and right nucleus accumbens. By demonstrating subcortical morphological differences unique to alcohol and nicotine use, rather than dependence across all substances, results suggest substance-specific relationships with subcortical brain structures.
  •  
3.
  • de Zwarte, Sonja M. C., et al. (författare)
  • Intelligence, educational attainment, and brain structure in those at familial high-risk for schizophrenia or bipolar disorder
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 414-430
  • Tidskriftsartikel (refereegranskat)abstract
    • First-degree relatives of patients diagnosed with schizophrenia (SZ-FDRs) show similar patterns of brain abnormalities and cognitive alterations to patients, albeit with smaller effect sizes. First-degree relatives of patients diagnosed with bipolar disorder (BD-FDRs) show divergent patterns; on average, intracranial volume is larger compared to controls, and findings on cognitive alterations in BD-FDRs are inconsistent. Here, we performed a meta-analysis of global and regional brain measures (cortical and subcortical), current IQ, and educational attainment in 5,795 individuals (1,103 SZ-FDRs, 867 BD-FDRs, 2,190 controls, 942 schizophrenia patients, 693 bipolar patients) from 36 schizophrenia and/or bipolar disorder family cohorts, with standardized methods. Compared to controls, SZ-FDRs showed a pattern of widespread thinner cortex, while BD-FDRs had widespread larger cortical surface area. IQ was lower in SZ-FDRs (d = -0.42, p = 3 × 10-5 ), with weak evidence of IQ reductions among BD-FDRs (d = -0.23, p = .045). Both relative groups had similar educational attainment compared to controls. When adjusting for IQ or educational attainment, the group-effects on brain measures changed, albeit modestly. Changes were in the expected direction, with less pronounced brain abnormalities in SZ-FDRs and more pronounced effects in BD-FDRs. To conclude, SZ-FDRs and BD-FDRs show a differential pattern of structural brain abnormalities. In contrast, both had lower IQ scores and similar school achievements compared to controls. Given that brain differences between SZ-FDRs and BD-FDRs remain after adjusting for IQ or educational attainment, we suggest that differential brain developmental processes underlying predisposition for schizophrenia or bipolar disorder are likely independent of general cognitive impairment.
  •  
4.
  • de Zwarte, Sonja M. C., et al. (författare)
  • The association between familial risk and brain abnormalities is disease specific : an ENIGMA-relatives study of schizophrenia and bipolar disorder
  • 2019
  • Ingår i: Biological Psychiatry. - : Elsevier. - 0006-3223 .- 1873-2402. ; 86:7, s. 545-556
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects.METHODS: We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects.RESULTS: FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects.CONCLUSIONS: Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.
  •  
5.
  • Dima, Danai, et al. (författare)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
6.
  • Frangou, Sophia, et al. (författare)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • Tidskriftsartikel (refereegranskat)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
7.
  • Groenewold, Nynke A., et al. (författare)
  • Volume of subcortical brain regions in social anxiety disorder : mega-analytic results from 37 samples in the ENIGMA-Anxiety Working Group
  • 2023
  • Ingår i: Molecular Psychiatry. - : Springer Nature. - 1359-4184 .- 1476-5578. ; 28:3, s. 1079-1089
  • Tidskriftsartikel (refereegranskat)abstract
    • There is limited convergence in neuroimaging investigations into volumes of subcortical brain regions in social anxiety disorder (SAD). The inconsistent findings may arise from variations in methodological approaches across studies, including sample selection based on age and clinical characteristics. The ENIGMA-Anxiety Working Group initiated a global mega-analysis to determine whether differences in subcortical volumes can be detected in adults and adolescents with SAD relative to healthy controls. Volumetric data from 37 international samples with 1115 SAD patients and 2775 controls were obtained from ENIGMA-standardized protocols for image segmentation and quality assurance. Linear mixed-effects analyses were adjusted for comparisons across seven subcortical regions in each hemisphere using family-wise error (FWE)-correction. Mixed-effects d effect sizes were calculated. In the full sample, SAD patients showed smaller bilateral putamen volume than controls (left: d = −0.077, pFWE = 0.037; right: d = −0.104, pFWE = 0.001), and a significant interaction between SAD and age was found for the left putamen (r = −0.034, pFWE = 0.045). Smaller bilateral putamen volumes (left: d = −0.141, pFWE < 0.001; right: d = −0.158, pFWE < 0.001) and larger bilateral pallidum volumes (left: d = 0.129, pFWE = 0.006; right: d = 0.099, pFWE = 0.046) were detected in adult SAD patients relative to controls, but no volumetric differences were apparent in adolescent SAD patients relative to controls. Comorbid anxiety disorders and age of SAD onset were additional determinants of SAD-related volumetric differences in subcortical regions. To conclude, subtle volumetric alterations in subcortical regions in SAD were detected. Heterogeneity in age and clinical characteristics may partly explain inconsistencies in previous findings. The association between alterations in subcortical volumes and SAD illness progression deserves further investigation, especially from adolescence into adulthood.
  •  
8.
  •  
9.
  • Gutman, Boris A, et al. (författare)
  • A meta-analysis of deep brain structural shape and asymmetry abnormalities in 2,833 individuals with schizophrenia compared with 3,929 healthy volunteers via the ENIGMA Consortium
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 352-372
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is associated with widespread alterations in subcortical brain structure. While analytic methods have enabled more detailed morphometric characterization, findings are often equivocal. In this meta-analysis, we employed the harmonized ENIGMA shape analysis protocols to collaboratively investigate subcortical brain structure shape differences between individuals with schizophrenia and healthy control participants. The study analyzed data from 2,833 individuals with schizophrenia and 3,929 healthy control participants contributed by 21 worldwide research groups participating in the ENIGMA Schizophrenia Working Group. Harmonized shape analysis protocols were applied to each site's data independently for bilateral hippocampus, amygdala, caudate, accumbens, putamen, pallidum, and thalamus obtained from T1-weighted structural MRI scans. Mass univariate meta-analyses revealed more-concave-than-convex shape differences in the hippocampus, amygdala, accumbens, and thalamus in individuals with schizophrenia compared with control participants, more-convex-than-concave shape differences in the putamen and pallidum, and both concave and convex shape differences in the caudate. Patterns of exaggerated asymmetry were observed across the hippocampus, amygdala, and thalamus in individuals with schizophrenia compared to control participants, while diminished asymmetry encompassed ventral striatum and ventral and dorsal thalamus. Our analyses also revealed that higher chlorpromazine dose equivalents and increased positive symptom levels were associated with patterns of contiguous convex shape differences across multiple subcortical structures. Findings from our shape meta-analysis suggest that common neurobiological mechanisms may contribute to gray matter reduction across multiple subcortical regions, thus enhancing our understanding of the nature of network disorganization in schizophrenia.
  •  
10.
  • Hibar, Derrek P., et al. (författare)
  • Novel genetic loci associated with hippocampal volume
  • 2017
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (r(g) = -0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (16)
Typ av innehåll
refereegranskat (15)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Thompson, Paul M (16)
Jahanshad, Neda (16)
Stein, Dan J (12)
Agartz, Ingrid (11)
Andreassen, Ole A (11)
visa fler...
Brouwer, Rachel M (10)
Veltman, Dick J (10)
Wittfeld, Katharina (10)
Glahn, David C. (10)
McDonald, Colm (9)
Westlye, Lars T (9)
Wright, Margaret J. (9)
de Zubicaray, Greig ... (9)
Ehrlich, Stefan (9)
McMahon, Katie L. (9)
Cannon, Dara M (8)
de Geus, Eco J. C. (8)
Martin, Nicholas G. (8)
Boomsma, Dorret I. (8)
Meyer-Lindenberg, An ... (8)
Schofield, Peter R (8)
Crespo-Facorro, Bene ... (8)
Tordesillas-Gutierre ... (8)
Sachdev, Perminder S ... (8)
Grabe, Hans J. (8)
Fisher, Simon E. (8)
van Haren, Neeltje E ... (8)
Pomarol-Clotet, Edit ... (7)
Thomopoulos, Sophia ... (7)
van der Wee, Nic J. ... (7)
Heinz, Andreas (7)
Medland, Sarah E (7)
Schmaal, Lianne (7)
Schumann, Gunter (7)
Brodaty, Henry (7)
Espeseth, Thomas (7)
Holmes, Avram J. (7)
Strike, Lachlan T. (7)
Franke, Barbara (6)
Canales-Rodríguez, E ... (6)
Radua, Joaquim (6)
Salvador, Raymond (6)
Andersson, Micael (6)
Aghajani, Moji (6)
Wang, Lei (6)
Nyberg, Lars, 1966- (6)
Jönsson, Erik G. (6)
Groenewold, Nynke A (6)
Ophoff, Roel A (6)
visa färre...
Lärosäte
Karolinska Institutet (12)
Umeå universitet (9)
Uppsala universitet (7)
Göteborgs universitet (1)
Linköpings universitet (1)
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (15)
Samhällsvetenskap (2)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy