SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Janson Christer) srt2:(2020-2022);pers:(Bertelsen R. J.)"

Sökning: WFRF:(Janson Christer) > (2020-2022) > Bertelsen R. J.

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Svanes, C., et al. (författare)
  • Cohort profile: the multigeneration Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) cohort
  • 2022
  • Ingår i: Bmj Open. - : BMJ. - 2044-6055. ; 12:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) cohort was established to (1) investigate how exposures before conception and in previous generations influence health and disease, particularly allergies and respiratory health, (2) identify susceptible time windows and (3) explore underlying mechanisms. The ultimate aim is to facilitate efficient intervention strategies targeting multiple generations. Participants RHINESSA includes study participants of multiple generations from ten study centres in Norway (1), Denmark (1), Sweden (3), Iceland (1), Estonia (1), Spain (2) and Australia (1). The RHINESSA core cohort, adult offspring generation 3 (G3), was first investigated in 2014-17 in a questionnaire study (N=8818, age 18-53 years) and a clinical study (subsample, n=1405). Their G2 parents participated in the population-based cohorts, European Community Respiratory Heath Survey and Respiratory Health In Northern Europe, followed since the early 1990s when they were 20-44 years old, at 8-10 years intervals. Study protocols are harmonised across generations. Findings to date Collected data include spirometry, skin prick tests, exhaled nitric oxide, anthropometrics, bioimpedance, blood pressure; questionnaire/interview data on respiratory/general/reproductive health, indoor/outdoor environment, smoking, occupation, general characteristics and lifestyle; biobanked blood, urine, gingival fluid, skin swabs; measured specific and total IgE, DNA methylation, sex hormones and oral microbiome. Research results suggest that parental environment years before conception, in particular, father's exposures such as smoking and overweight, may be of key importance for asthma and lung function, and that there is an important susceptibility window in male prepuberty. Statistical analyses developed to approach causal inference suggest that these associations may be causal. DNA methylation studies suggest a mechanism for transfer of father's exposures to offspring health and disease through impact on offspring DNA methylation. Future plans Follow-up is planned at 5-8 years intervals, first in 2021-2023. Linkage with health registries contributes to follow-up of the cohort.
  •  
2.
  • Accordini, S., et al. (författare)
  • Prenatal and prepubertal exposures to tobacco smoke in men may cause lower lung function in future offspring: a three-generation study using a causal modelling approach
  • 2021
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 58:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Mechanistic research suggests that lifestyle and environmental factors impact respiratory health across generations by epigenetic changes transmitted through male germ cells. Evidence from studies on humans is very limited. We investigated multigeneration causal associations to estimate the causal effects of tobacco smoking on lung function within the paternal line. We analysed data from 383 adult offspring (age 18-47 years; 52.0% female) and their 274 fathers, who had participated in the European Community Respiratory Health Survey (ECRHS)/Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study and had provided valid measures of pre-bronchodilator lung function. Two counterfactual-based, multilevel mediation models were developed with: paternal grandmothers' smoking in pregnancy and fathers' smoking initiation in prepuberty as exposures; fathers' forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), or FEV1/FVC z-scores as potential mediators (proxies of unobserved biological mechanisms that are true mediators); and offspring's FEV1 and FVC, or FEV1/FVC z-scores as outcomes. All effects were summarised as differences (Delta) in expected z-scores related to fathers' and grandmothers' smoking history. Fathers' smoking initiation in prepuberty had a negative direct effect on both offspring's FEV1 (Delta z-score -0.36, 95% CI -0.63--0.10) and FVC (-0.50, 95% CI -0.80--0.20) compared with fathers' never smoking. Paternal grandmothers' smoking in pregnancy had a negative direct effect on fathers' FEV1/FVC -0.57, 95% CI -1.09--0.05) and a negative indirect effect on offspring's FEV1/FVC (-0.12, 95% CI -0.21--0.03) compared with grandmothers' not smoking before fathers' birth nor during fathers' childhood. Fathers' smoking in prepuberty and paternal grandmothers' smoking in pregnancy may cause lower lung function in offspring. Our results support the concept that lifestyle-related exposures during these susceptibility periods influence the health of future generations.
  •  
3.
  • Johannessen, A., et al. (författare)
  • Being overweight in childhood, puberty, or early adulthood: Changing asthma risk in the next generation?
  • 2020
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 145:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Overweight status and asthma have increased during the last decades. Being overweight is a known risk factor for asthma, but it is not known whether it might also increase asthma risk in the next generation. Objective: We aimed to examine whether parents being overweight in childhood, adolescence, or adulthood is associated with asthma in their offspring. Methods: We included 6347 adult offspring (age, 18-52 years) investigated in the Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) multigeneration study of 2044 fathers and 2549 mothers (age, 37-66 years) investigated in the European Community Respiratory Health Survey (ECRHS) study. Associations of parental overweight status at age 8 years, puberty, and age 30 years with offspring's childhood overweight status (potential mediator) and offspring's asthma with or without nasal allergies (outcomes) was analyzed by using 2-level logistic regression and 2-level multinomial logistic regression, respectively. Counterfactual-based mediation analysis was performed to establish whether observed associations were direct or indirect effects mediated through the offspring's own overweight status. Results: We found statistically significant associations between both fathers' and mothers' childhood overweight status and offspring's childhood overweight status (odds ratio, 2.23 [95% CI, 1.45-3.42] and 2.45 [95% CI, 1.86-3.22], respectively). We also found a statistically significant effect of fathers' onset of being overweight in puberty on offspring's asthma without nasal allergies (relative risk ratio, 2.31 [95% CI, 1.23-4.33]). This effect was direct and not mediated through the offspring's own overweight status. No effect on offspring's asthma with nasal allergies was found. Conclusion: Our findings suggest that metabolic factors long before conception can increase asthma risk and that male puberty is a time window of particular importance for offspring's health. © 2019 The Authors
  •  
4.
  • Knudsen, G. T. M., et al. (författare)
  • Parents' smoking onset before conception as related to body mass index and fat mass in adult offspring: Findings from the RHINESSA generation study
  • 2020
  • Ingår i: Plos One. - : Public Library of Science (PLoS). - 1932-6203. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Emerging evidence suggests that parents' preconception exposures may influence offspring health. We aimed to investigate maternal and paternal smoking onset in specific time windows in relation to offspring body mass index (BMI) and fat mass index (FMI). We investigated fathers (n = 2111) and mothers (n = 2569) aged 39-65 years, of the population based RHINE and ECRHS studies, and their offspring aged 18-49 years (n = 6487, mean age 29.6 years) who participated in the RHINESSA study. BMI was calculated from self-reported height and weight, and FMI was estimated from bioelectrical impedance measures in a subsample. Associations with parental smoking were analysed with generalized linear regression adjusting for parental education and clustering by study centre and family. Interactions between offspring sex were analysed, as was mediation by parental pack years, parental BMI, offspring smoking and offspring birthweight. Fathers' smoking onset before conception of the offspring (onset >= 15 years) was associated with higher BMI in the offspring when adult (beta 0.551, 95%CI: 0.174-0.929, p = 0.004). Mothers' preconception and postnatal smoking onset was associated with higher offspring BMI (onset <15 years: beta 1.161, 95%CI 0.378-1.944; onset >= 15 years: beta 0.720, 95%CI 0.293-1.147; onset after offspring birth: beta 2.257, 95%CI 1.220-3.294). However, mediation analysis indicated that these effects were fully mediated by parents' postnatal pack years, and partially mediated by parents' BMI and offspring smoking. Regarding FMI, sons of smoking fathers also had higher fat mass (onset <15 years beta 1.604, 95%CI 0.269-2.939; onset >= 15 years beta 2.590, 95%CI 0.544-4.636; and onset after birth beta 2.736, 95%CI 0.621-4.851). There was no association between maternal smoking and offspring fat mass. We found that parents' smoking before conception was associated with higher BMI in offspring when they reached adulthood, but that these effects were mediated through parents' pack years, suggesting that cumulative smoking exposure during offspring's childhood may elicit long lasting effects on offspring BMI.
  •  
5.
  • Kuiper, I. N., et al. (författare)
  • Associations of Preconception Exposure to Air Pollution and Greenness with Offspring Asthma and Hay Fever
  • 2020
  • Ingår i: International Journal of Environmental Research and Public Health. - : MDPI AG. - 1660-4601 .- 1661-7827. ; 17:16
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated if greenness and air pollution exposure in parents' childhood affect offspring asthma and hay fever, and if effects were mediated through parental asthma, pregnancy greenness/pollution exposure, and offspring exposure. We analysed 1106 parents with 1949 offspring (mean age 35 and 6) from the Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study. Mean particulate matter (PM(2.5)and PM10), nitrogen dioxide (NO2), black carbon (BC), ozone (O-3) (mu g/m(3)) and greenness (normalized difference vegetation index (NDVI)) were calculated for parents 0-18 years old and offspring 0-10 years old, and were categorised in tertiles. We performed logistic regression and mediation analyses for two-pollutant models (clustered by family and centre, stratified by parental lines, and adjusted for grandparental asthma and education). Maternal medium PM(2.5)and PM(10)exposure was associated with higher offspring asthma risk (odds ratio (OR) 2.23, 95%CI 1.32-3.78, OR 2.27, 95%CI 1.36-3.80), and paternal high BC exposure with lower asthma risk (OR 0.31, 95%CI 0.11-0.87). Hay fever risk increased for offspring of fathers with medium O(3)exposure (OR 4.15, 95%CI 1.28-13.50) and mothers with high PM(10)exposure (OR 2.66, 95%CI 1.19-5.91). The effect of maternal PM(10)exposure on offspring asthma was direct, while for hay fever, it was mediated through exposures in pregnancy and offspring's own exposures. Paternal O(3)exposure had a direct effect on offspring hay fever. To conclude, parental exposure to air pollution appears to influence the risk of asthma and allergies in future offspring.
  •  
6.
  • Nordeide Kuiper, I., et al. (författare)
  • Lifelong exposure to air pollution and greenness in relation to asthma, rhinitis and lung function in adulthood
  • 2021
  • Ingår i: Environmental International. - : Elsevier BV. - 0160-4120 .- 1873-6750. ; 146
  • Tidskriftsartikel (refereegranskat)abstract
    • Objectives: To investigate if air pollution and greenness exposure from birth till adulthood affects adult asthma, rhinitis and lung function. Methods: We analysed data from 3428 participants (mean age 28) in the RHINESSA study in Norway and Sweden. Individual mean annual residential exposures to nitrogen dioxide (NO2), particulate matter (PM10 and PM2.5), black carbon (BC), ozone (O3) and greenness (normalized difference vegetation index (NDVI)) were averaged across susceptibility windows (0–10 years, 10–18 years, lifetime, adulthood (year before study participation)) and analysed in relation to physician diagnosed asthma (ever/allergic/non-allergic), asthma attack last 12 months, current rhinitis and low lung function (lower limit of normal (LLN), z-scores of forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and FEV1/FVC below 1.64). We performed logistic regression for asthma attack, rhinitis and LLN lung function (clustered with family and study centre), and conditional logistic regression with a matched case-control design for ever/allergic/non-allergic asthma. Multivariable models were adjusted for parental asthma and education. Results: Childhood, adolescence and adult exposure to NO2, PM10 and O3 were associated with an increased risk of asthma attacks (ORs between 1.29 and 2.25), but not with physician diagnosed asthma. For rhinitis, adulthood exposures seemed to be most important. Childhood and adolescence exposures to PM2.5 and O3 were associated with lower lung function, in particular FEV1 (range ORs 2.65 to 4.21). No associations between NDVI and asthma or rhinitis were revealed, but increased NDVI was associated with lower FEV1 and FVC in all susceptibility windows (range ORs 1.39 to 1.74). Conclusions: Air pollution exposures in childhood, adolescence and adulthood were associated with increased risk of asthma attacks, rhinitis and low lung function in adulthood. Greenness was not associated with asthma or rhinitis, but was a risk factor for low lung function. © 2020 The Authors
  •  
7.
  • Pape, K., et al. (författare)
  • Parental occupational exposure pre- and post-conception and development of asthma in offspring
  • 2020
  • Ingår i: International journal of epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 49:6, s. 1856-1869
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: While direct effects of occupational exposures on an individual's respiratory health are evident, a new paradigm is emerging on the possible effects of preconception occupational exposure on respiratory health in offspring. We aimed to study the association between parental occupational exposure starting before conception and asthma in their offspring (at 0-15 years of age). Methods: We studied 3985 offspring participating in the Respiratory Health in Northern Europe, Spain and Australia (RHINESSA) generation study. Their mothers or fathers (n = 2931) previously participated in the European Community Respiratory Health Survey (ECRHS). Information was obtained from questionnaires on parental job history pre- and post-conception which was linked to an asthma-specific job-exposure matrix (JEM). We assessed the association between parental occupational exposure and offspring asthma, applying logistic regression models, clustered by family and adjusted for study centre, offspring sex, parental characteristics (age, asthma onset, place of upbringing, smoking) and grandparents' level of education. Results: Parental occupational exposure to microorganisms, pesticides, allergens or reactive chemicals pre-conception or both pre- and post-conception was not related to offspring asthma; in general, subgroup analyses confirmed this result. However, maternal exposure both pre- and post-conception to allergens and reactive chemicals was associated with increased odds for early-onset asthma in offspring (0-3 years of age); odds ratio 1.70 (95% CI: 1.02-2.84) and 1.65 (95% CI: 0.98-2.77), respectively. Conclusions: This study did not find evidence that parental occupational exposure, defined by an asthma JEM before conception only or during pre- and post-conception vs non-exposed, was associated with offspring asthma.
  •  
8.
  • Timm, S., et al. (författare)
  • Does parental farm upbringing influence the risk of asthma in offspring? A three-generation study
  • 2020
  • Ingår i: International journal of epidemiology. - : Oxford University Press (OUP). - 0300-5771 .- 1464-3685. ; 49:6, s. 1874-1882
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A farm upbringing has been associated with lower risk of asthma and methylation of asthma-related genes. As such, a farm upbringing has the potential to transfer asthma risk across generations, but this has never been investigated. We aimed to study the generational effects from a parental farm upbringing on offspring asthma. Methods: Our study involved three generations: 5759 participants from the European Community Respiratory Health Survey (ECRHS) study (born 1945-1971, denoted G1), their 9991 parents (GO) and their 8260 offspring (G2) participating in RHINESSA (Respiratory Health In Northern Europe, Spain and Australia). Questionnaire data were collected on GO and G1 from G1 in 2010 and on G2 from themselves in 2013. The parental/grandparental place of upbringing was categorized: (i) both parents from farm; (ii) mother from farm, father from village/city; (iii) father from farm, mother from village/city; (iv) both parents from village or one parent from village and one from city; (v) both parents from city (reference group). Grandparental upbringing was equivalently categorized. Offspring asthma was self-reported and data were analysed using Cox-regression models with G2 age as the time scale. Results: A parental farm upbringing was not associated with offspring asthma when compared with city upbringing [hazard ratio (HR) 1.12, 95% confidence interval (CI) 0.74-1.69]. Findings remained similar when stratified by offspring upbringing and asthma phenotypes. Quantitative bias analyses showed similar estimates for alternative data sources. A grandparental farm upbringing was not associated with offspring asthma in either the maternal (HR 1.05, 95% CI 0.67-1.65) or paternal line (HR 1.02, 95% CI 0.62-1.68). Conclusions: This multigenerational analysis suggests no evidence of an association between parental/grandparental farm upbringing and offspring asthma.
  •  
9.
  • Tjalvin, G., et al. (författare)
  • Maternal preconception occupational exposure to cleaning products and disinfectants and offspring asthma
  • 2022
  • Ingår i: Journal of Allergy and Clinical Immunology. - : Elsevier BV. - 0091-6749 .- 1097-6825. ; 149:1, s. 422-431
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Emerging research suggests health effects in offspring after parental chemical exposures before conception. Many future mothers are exposed to potent chemicals at work, but potential offspring health effects are hardly investigated. Objective: We sought to investigate childhood asthma in relation to mother's occupational exposure to cleaning products and disinfectants before conception. Methods: The multicenter Respiratory Health In Northern Europe/Respiratory Health In Northern Europe, Spain and Australia generation study investigated asthma and wheeze starting at age less than 10 years in 3318 mother-offspring pairs. From an asthma-specific Job-Exposure Matrix and mothers' occupational history, we defined maternal occupational exposure to indoor cleaning agents (cleaning products/detergents and disinfectants) starting before conception, in the 2-year period around conception and pregnancy, or after birth. Never-employed mothers were excluded. Exposed groups include cleaners, health care workers, cooks, and so forth. Associations were analyzed using mixed-effects logistic regression and ordinary logistic regression with clustered robust SEs and adjustment for maternal education. Results: Maternal occupational exposure to indoor cleaning starting preconception and continuing (n = 610) was associated with offspring's childhood asthma: odds ratio 1.56 (95% CI, 1.05-2.31), childhood asthma with nasal allergies: 1.77 (1.13-2.77), and childhood wheeze and/or asthma: 1.71 (95% CI, 1.19-2.44). Exposure starting around conception and pregnancy (n = 77) was associated with increased childhood wheeze and/or asthma: 2.25 (95% CI, 1.03-4.91). Exposure starting after birth was not associated with asthma outcomes (1.13 [95% CI, 0.71-1.80], 1.15 [95% CI, 0.67-1.97], 1.08 [95% CI, 0.69-1.67]). Conclusions: Mother's occupational exposure to indoor cleaning agents starting before conception, or around conception and pregnancy, was associated with more childhood asthma and wheeze in offspring. Considering potential implications for vast numbers of women in childbearing age using cleaning agents, and their children, further research is imperative.
  •  
10.
  • Wang, Juan, et al. (författare)
  • A prospective study on the role of smoking, environmental tobacco smoke, indoor painting and living in old or new buildings on asthma, rhinitis and respiratory symptoms
  • 2021
  • Ingår i: Environmental Research. - SAN DIEGO USA : Elsevier BV. - 0013-9351 .- 1096-0953. ; 192
  • Tidskriftsartikel (refereegranskat)abstract
    • We studied associations between tobacco smoke, home environment and respiratory health in a 10 year follow up of a cohort of 11,506 adults in Northern Europe. Multilevel logistic regression models were applied to estimate onset and remission of symptoms. Current smokers at baseline developed more respiratory symptoms (OR = 1.39–4.43) and rhinitis symptoms (OR = 1.35). Starting smoking during follow up increased the risk of new respiratory symptoms (OR = 1.54–1.97) and quitting smoking decreased the risk (OR = 0.34–0.60). ETS at baseline increased the risk of wheeze (OR = 1.26). Combined ETS at baseline or follow up increased the risk of wheeze (OR = 1.27) and nocturnal cough (OR = 1.22). Wood painting at baseline reduced remission of asthma (OR 95%CI: 0.61, 0.38–0.99). Floor painting at home increased productive cough (OR 95%CI: 1.64, 1.15–2.34) and decreased remission of wheeze (OR 95%CI: 0.63, 0.40–0.996). Indoor painting (OR 95%CI: 1.43, 1.16–1.75) and floor painting (OR 95%CI: 1.77, 1.11–2.82) increased remission of allergic rhinitis. Living in the oldest buildings (constructed before 1960) was associated with higher onset of nocturnal cough and doctor diagnosed asthma. Living in the newest buildings (constructed 1986–2001) was associated with higher onset of nocturnal breathlessness (OR = 1.39) and rhinitis (OR = 1.34). In conclusion, smoking, ETS and painting indoor can be risk factors for respiratory symptoms. Wood painting and floor painting can reduce remission of respiratory symptoms. Smoking can increase rhinitis. Living in older buildings can be a risk factor for nocturnal cough and doctor diagnosed asthma. Living in new buildings can increase nocturnal dyspnoea and rhinitis. © 2020 The Authors
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy