SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jarvis Deborah L.) ;pers:(Siroux Valérie)"

Sökning: WFRF:(Jarvis Deborah L.) > Siroux Valérie

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adam, Martin, et al. (författare)
  • Adult lung function and long-term air pollution exposure. ESCAPE : a multicentre cohort study and meta-analysis
  • 2015
  • Ingår i: European Respiratory Journal. - : European Respiratory Society (ERS). - 0903-1936 .- 1399-3003. ; 41:5, s. 38-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m(-3) increase in NO2 exposure was associated with lower levels of FEV1 (-14.0 mL, 95%CI -25.8- -2.1) and FVC (-14.9 mL, 95% CI -28.7- -1.1). An increase of 10 μg·m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (-44.6 mL, 95% CI -85.4- -3.8) and FVC (-59.0 mL, 95% CI -112.3- -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe.
  •  
2.
  • Jacquemin, Benedicte, et al. (författare)
  • Ambient Air Pollution and Adult Asthma Incidence in Six European Cohorts (ESCAPE)
  • 2015
  • Ingår i: Journal of Environmental Health Perspectives. - : Environmental Health Perspectives. - 0091-6765 .- 1552-9924. ; 123:6, s. 613-621
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Short-term exposure to air pollution has adverse effects among patients with asthma, but whether long-term exposure to air pollution is a cause of adult-onset asthma is unclear. OBJECTIVE: We aimed to investigate the association between air pollution and adult onset asthma. METHODS: Asthma incidence was prospectively assessed in six European cohorts. Exposures studied were annual average concentrations at home addresses for nitrogen oxides assessed for 23,704 participants (including 1,257 incident cases) and particulate matter (PM) assessed for 17,909 participants through ESCAPE land-use regression models and traffic exposure indicators. Meta-analyses of cohort-specific logistic regression on asthma incidence were performed. Models were adjusted for age, sex, overweight, education, and smoking and included city/area within each cohort as a random effect. RESULTS: In this longitudinal analysis, asthma incidence was positively, but not significantly, associated with all exposure metrics, except for PMcoarse. Positive associations of borderline significance were observed for nitrogen dioxide [adjusted odds ratio (OR) = 1.10; 95% CI: 0.99, 1.21 per 10 mu g/m(3); p = 0.10] and nitrogen oxides (adjusted OR = 1.04; 95% CI: 0.99, 1.08 per 20 mu g/m(3); p = 0.08). Nonsignificant positive associations were estimated for PM10 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 10 mu g/m(3)), PM2.5 (adjusted OR = 1.04; 95% CI: 0.88, 1.23 per 5 mu g/m(3)), PM2.5absorbance (adjusted OR = 1.06; 95% CI: 0.95, 1.19 per 10(-5)/m), traffic load (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 4 million vehicles x meters/day on major roads in a 100-m buffer), and traffic intensity (adjusted OR = 1.10; 95% CI: 0.93, 1.30 per 5,000 vehicles/day on the nearest road). A nonsignificant negative association was estimated for PMcoarse (adjusted OR = 0.98; 95% CI: 0.87, 1.14 per 5 mu g/m(3)). CONCLUSIONS: Results suggest a deleterious effect of ambient air pollution on asthma incidence in adults. Further research with improved personal-level exposure assessment (vs. residential exposure assessment only) and phenotypic characterization is needed.
  •  
3.
  • Peralta, Gabriela P., et al. (författare)
  • Body mass index and weight change are associated with adult lung function trajectories : the prospective ECRHS study
  • 2020
  • Ingår i: Thorax. - : BMJ Publishing Group Ltd. - 0040-6376 .- 1468-3296. ; 75:4, s. 313-320
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Previous studies have reported an association between weight increase and excess lung function decline in young adults followed for short periods. We aimed to estimate lung function trajectories during adulthood from 20-year weight change profiles using data from the population-based European Community Respiratory Health Survey (ECRHS).METHODS: We included 3673 participants recruited at age 20-44 years with repeated measurements of weight and lung function (forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1)) in three study waves (1991-93, 1999-2003, 2010-14) until they were 39-67 years of age. We classified subjects into weight change profiles according to baseline body mass index (BMI) categories and weight change over 20 years. We estimated trajectories of lung function over time as a function of weight change profiles using population-averaged generalised estimating equations.RESULTS: In individuals with normal BMI, overweight and obesity at baseline, moderate (0.25-1 kg/year) and high weight gain (>1 kg/year) during follow-up were associated with accelerated FVC and FEV1 declines. Compared with participants with baseline normal BMI and stable weight (±0.25 kg/year), obese individuals with high weight gain during follow-up had -1011 mL (95% CI -1.259 to -763) lower estimated FVC at 65 years despite similar estimated FVC levels at 25 years. Obese individuals at baseline who lost weight (<-0.25 kg/year) exhibited an attenuation of FVC and FEV1 declines. We found no association between weight change profiles and FEV1/FVC decline.CONCLUSION: Moderate and high weight gain over 20 years was associated with accelerated lung function decline, while weight loss was related to its attenuation. Control of weight gain is important for maintaining good lung function in adult life.
  •  
4.
  • Peralta, Gabriela P., et al. (författare)
  • Body mass index trajectories during adult life and lung function decline
  • 2018
  • Ingår i: European Respiratory Journal. - : European Respiratory Society. - 0903-1936 .- 1399-3003. ; 52
  • Tidskriftsartikel (övrigt vetenskapligt/konstnärligt)abstract
    • Body mass index (BMI) has been associated with lung function. Whether distinct BMI trajectories during adult life affect lung function differently is unknown. We assessed associations of BMI trajectories from 34 to 54 years with lung function decline over the same period of time in the ECRHS cohort.BMI trajectories were developed using Group-Based Trajectory Modeling on data collected at least twice between ECRHS I and ECRHS III (n=9327). Associations of these trajectories with lung function decline were assessed using mixed linear regression models (adjusted for sex, age, age2, height, smoking status and baseline lung function) in a subgroup (n=3534) with lung function data at ECRHS I and III. As sex-specific analyses showed similar findings, males and females were combined.Four parallel trajectories were identified: ‘normal’, ‘overweight’, ‘obese’ and ‘morbidly obese’ (Fig. 1). Those with higher BMI trajectories had greater decline of FEV1 and FVC than those with ‘normal BMI’ trajectory (Fig. 2).Overweight and obese trajectories of BMI during adult life were associated with greater lung function decline in the ECRHS cohort.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy