SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jauker Birgit) "

Sökning: WFRF:(Jauker Birgit)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • De Palma, Adriana, et al. (författare)
  • Predicting bee community responses to land-use changes : effects of geographic and taxonomic biases
  • 2016
  • Ingår i: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6, s. 1-14
  • Tidskriftsartikel (refereegranskat)abstract
    • Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
  •  
2.
  • Herbertsson, Lina, et al. (författare)
  • Bees increase seed set of wild plants while the proportion of arable land has a variable effect on pollination in European agricultural landscapes
  • 2021
  • Ingår i: Plant Ecology and Evolution. - : Societe Royale de Botanique de Belgique. - 2032-3913 .- 2032-3921. ; 154:3, s. 341-350
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and aims: Agricultural intensification and loss of farmland heterogeneity have contributed to population declines of wild bees and other pollinators, which may have caused subsequent declines in insect-pollinated wild plants.Material and methods: Using data from 37 studies on 22 pollinator-dependent wild plant species across Europe, we investigated whether flower visitation and seed set of insect-pollinated plants decline with an increasing proportion of arable land within 1 km.Key results: Seed set increased with increasing flower visitation by bees, most of which were wild bees, but not with increasing flower visitation by other insects. Increasing proportion of arable land had a strongly variable effect on seed set and flower visitation by bees across studies.Conclusion:Factors such as landscape configuration, local habitat quality, and temporally changing resource availability (e.g. due to mass-flowering crops or honey bee hives) could have modified the effect of arable land on pollination. While our results highlight that the persistence of wild bees is crucial to maintain plant diversity, we also show that pollen limitation due to declining bee populations in homogenized agricultural landscapes is not a universal driver causing parallel losses of bees and insect-pollinated plants. 
  •  
3.
  • Hudson, Lawrence N, et al. (författare)
  • The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project
  • 2017
  • Ingår i: Ecology and Evolution. - : John Wiley & Sons. - 2045-7758. ; 7:1, s. 145-188
  • Tidskriftsartikel (refereegranskat)abstract
    • The PREDICTS project-Projecting Responses of Ecological Diversity In Changing Terrestrial Systems (www.predicts.org.uk)-has collated from published studies a large, reasonably representative database of comparable samples of biodiversity from multiple sites that differ in the nature or intensity of human impacts relating to land use. We have used this evidence base to develop global and regional statistical models of how local biodiversity responds to these measures. We describe and make freely available this 2016 release of the database, containing more than 3.2 million records sampled at over 26,000 locations and representing over 47,000 species. We outline how the database can help in answering a range of questions in ecology and conservation biology. To our knowledge, this is the largest and most geographically and taxonomically representative database of spatial comparisons of biodiversity that has been collated to date; it will be useful to researchers and international efforts wishing to model and understand the global status of biodiversity.
  •  
4.
  • Hudson, Lawrence N., et al. (författare)
  • The PREDICTS database : a global database of how local terrestrial biodiversity responds to human impacts
  • 2014
  • Ingår i: Ecology and Evolution. - : Wiley. - 2045-7758. ; 4:24, s. 4701-4735
  • Tidskriftsartikel (refereegranskat)abstract
    • Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species' threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project - and avert - future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups - including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems - ). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.
  •  
5.
  • Marini, Lorenzo, et al. (författare)
  • Contrasting effects of habitat area and connectivity on evenness of pollinator communities
  • 2014
  • Ingår i: Ecography. - : Wiley. - 1600-0587 .- 0906-7590. ; 37:6, s. 544-551
  • Tidskriftsartikel (refereegranskat)abstract
    • Losses of both habitat area and connectivity have been identified as important drivers of species richness declines, but little theoretical and empirical work exists that addresses the effect of fragmentation on relative commonness of highly mobile species such as pollinating insects. With a large dataset of wild bee and butterfly abundances collected across Europe, we first tested the effect of habitat area and connectivity on evenness in pollinator communities using a large array of indexes that give different weight to dominance and rarity. Second, we tested if traits related to mobility and diet breadth could explain the observed evenness patterns. We found a clear negative effect of area and a weaker, but positive effect of connectivity on evenness. Communities in small habitat fragments were mainly composed of mobile and generalist species. The higher evenness in small fragments could thereby be generated by highly mobile species that maintain local populations with frequent inter-fragment movements. Trait analysis suggested an increasing importance of dispersal over local recruitment, as we move from large to small fragments and from less to more connected fragments. Species richness and evenness were negatively correlated indicating that the two variables responded differently to habitat area and connectivity, although the mechanisms underlying the observed patterns are difficult to isolate. Even though habitat area and connectivity often decrease simultaneously due to habitat fragmentation, an interesting practical implication of the contrasting effect of the two variables is that the resulting community composition will depend on the relative strength of these two processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy