SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Jencson J. E.) ;pers:(Lunnan Ragnhild)"

Search: WFRF:(Jencson J. E.) > Lunnan Ragnhild

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Yan, Lin, et al. (author)
  • Helium-rich Superluminous Supernovae from the Zwicky Transient Facility
  • 2020
  • In: Astrophysical Journal Letters. - : American Astronomical Society. - 2041-8205 .- 2041-8213. ; 902:1
  • Journal article (peer-reviewed)abstract
    • Helium is expected to be present in the massive ejecta of some hydrogen-poor superluminous supernovae (SLSN-I). However, until now only one event has been identified with He features in its photospheric spectra (PTF10hgi). We present the discovery of a new He-rich SLSN-I, ZTF19aawfbtg (SN2019hge), atz = 0.0866. This event has more than 10 optical spectra at phases from -41 to +103 days relative to the peak, most of which match well with that of PTF10hgi. Confirmation comes from a near-IR spectrum taken at +34 days, revealing Heifeatures with P-Cygni profiles at 1.083 and 2.058 mu m. Using the optical spectra of PTF10hgi and SN2019hge as templates, we examined 70 other SLSNe-I discovered by Zwicky Transient Facility in the first two years of operation and found five additional SLSNe-I with distinct He-features. The excitation of Heiatoms in normal core-collapse supernovae requires nonthermal radiation, as proposed by previous studies. These He-rich events cannot be explained by the traditional(56)Ni mixing model because of their blue spectra, high peak luminosities, and long rise timescales. Magnetar models offer a possible solution since pulsar winds naturally generate high-energy particles, potential sources of nonthermal excitation. An alternative model is the interaction between the ejecta and dense H-poor circumstellar material, which may be supported by observed undulations in the light curves. These six SLSNe-Ib have relatively low-peak luminosities (rest frameM(g) = -20.06 0.16).
  •  
2.
  • Chen, Z. H., et al. (author)
  • The Hydrogen-poor Superluminous Supernovae from the Zwicky Transient Facility Phase I Survey. I. Light Curves and Measurements
  • 2023
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 943:1
  • Journal article (peer-reviewed)abstract
    • During the Zwicky Transient Facility (ZTF) Phase I operations, 78 hydrogen-poor superluminous supernovae (SLSNe-I) were discovered in less than 3 yr, constituting the largest sample from a single survey. This paper (Paper I) presents the data, including the optical/UV light curves and classification spectra, while Paper II in this series will focus on the detailed analysis of the light curves and modeling. Our photometry is primarily taken by ZTF in the g, r, and i bands, and with additional data from other ground-based facilities and Swift. The events of our sample cover a redshift range of z = 0.06 − 0.67, with a median and 1σ error (16% and 84% percentiles) of zmed=0.265. The peak luminosity covers −22.8 mag ≤ Mg,peak ≤ −19.8 mag, with a median value of -21.48. The light curves evolve slowly with a mean rest-frame rise time of trise = 41.9 ± 17.8 days. The luminosity and timescale distributions suggest that low-luminosity SLSNe-I with a peak luminosity ∼−20 mag or extremely fast-rising events (<10 days) exist, but are rare. We confirm previous findings that slowly rising SLSNe-I also tend to fade slowly. The rest-frame color and temperature evolution show large scatters, suggesting that the SLSN-I population may have diverse spectral energy distributions. The peak rest-frame color shows a moderate correlation with the peak absolute magnitude, i.e., brighter SLSNe-I tend to have bluer colors. With optical and UV photometry, we construct the bolometric luminosity and derive a bolometric correction relation that is generally applicable for converting g, r-band photometry to the bolometric luminosity for SLSNe-I.
  •  
3.
  • De, Kishalay, et al. (author)
  • The Zwicky Transient Facility Census of the Local Universe. I. Systematic Search for Calcium-rich Gap Transients Reveals Three Related Spectroscopic Subclasses
  • 2020
  • In: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 905:1
  • Journal article (peer-reviewed)abstract
    • Using the Zwicky Transient Facility alert stream, we are conducting a large spectroscopic campaign to construct a complete, volume-limited sample of transients brighter than 20 mag, and coincident within 100 '' of galaxies in the Census of the Local Universe catalog. We describe the experiment design and spectroscopic completeness from the first 16 months of operations, which have classified 754 supernovae. We present results from a systematic search for calcium-rich gap transients in the sample of 22 low-luminosity (peak absolute magnitude M > -17), hydrogen-poor events found in the experiment. We report the detection of eight new events, and constrain their volumetric rate to greater than or similar to 15% +/- 5% of the SN Ia rate. Combining this sample with 10 previously known events, we find a likely continuum of spectroscopic properties ranging from events with SN Ia-like features (Ca-Ia objects) to those with SN Ib/c-like features (Ca-Ib/c objects) at peak light. Within the Ca-Ib/c events, we find two populations distinguished by their red (g - r approximate to 1.5 mag) or green (g - r approximate to 0.5 mag) colors at the r-band peak, wherein redder events show strong line blanketing features and slower light curves (similar to Ca-Ia objects), weaker He lines, and lower [Ca II]/[O I] in the nebular phase. We find that all together the spectroscopic continuum, volumetric rates, and striking old environments are consistent with the explosive burning of He shells on low-mass white dwarfs. We suggest that Ca-Ia and red Ca-Ib/c objects arise from the double detonation of He shells, while green Ca-Ib/c objects are consistent with low-efficiency burning scenarios like detonations in low-density shells or deflagrations.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view