SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jern Christina 1962) ;pers:(Melander O.)"

Sökning: WFRF:(Jern Christina 1962) > Melander O.

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • Chauhan, G., et al. (författare)
  • Genetic and lifestyle risk factors for MRI-defined brain infarcts in a population-based setting
  • 2019
  • Ingår i: Neurology. - : Ovid Technologies (Wolters Kluwer Health). - 0028-3878 .- 1526-632X. ; 92:5, s. E486-E503
  • Tidskriftsartikel (refereegranskat)abstract
    • ObjectiveTo explore genetic and lifestyle risk factors of MRI-defined brain infarcts (BI) in large population-based cohorts.MethodsWe performed meta-analyses of genome-wide association studies (GWAS) and examined associations of vascular risk factors and their genetic risk scores (GRS) with MRI-defined BI and a subset of BI, namely, small subcortical BI (SSBI), in 18 population-based cohorts (n = 20,949) from 5 ethnicities (3,726 with BI, 2,021 with SSBI). Top loci were followed up in 7 population-based cohorts (n = 6,862; 1,483 with BI, 630 with SBBI), and we tested associations with related phenotypes including ischemic stroke and pathologically defined BI.ResultsThe mean prevalence was 17.7% for BI and 10.5% for SSBI, steeply rising after age 65. Two loci showed genome-wide significant association with BI: FBN2, p = 1.77 x 10(-8); and LINC00539/ZDHHC20, p = 5.82 x 10(-9). Both have been associated with blood pressure (BP)-related phenotypes, but did not replicate in the smaller follow-up sample or show associations with related phenotypes. Age- and sex-adjusted associations with BI and SSBI were observed for BP traits (p value for BI, p([BI]) = 9.38 x 10(-25); p([SSBI]) = 5.23 x 10(-14) for hypertension), smoking (p([BI]) = 4.4 x 10(-10); p([SSBI]) = 1.2 x 10(-4)), diabetes (p([BI]) = 1.7 x 10(-8); p([SSBI]) = 2.8 x 10(-3)), previous cardiovascular disease (p([BI]) = 1.0 x 10(-18); p([SSBI]) = 2.3 x 10(-7)), stroke (p([BI]) = 3.9 x 10(-69); p([SSBI]) = 3.2 x 10(-24)), and MRI-defined white matter hyperintensity burden (p([BI]) = 1.43 x 10(-157); p([SSBI]) = 3.16 x 10(-106)), but not with body mass index or cholesterol. GRS of BP traits were associated with BI and SSBI (p 0.0022), without indication of directional pleiotropy.ConclusionIn this multiethnic GWAS meta-analysis, including over 20,000 population-based participants, we identified genetic risk loci for BI requiring validation once additional large datasets become available. High BP, including genetically determined, was the most significant modifiable, causal risk factor for BI.
  •  
4.
  • Cole, J. W., et al. (författare)
  • The copy number variation and stroke (CaNVAS) risk and outcome study
  • 2021
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 16:4 April
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and purpose The role of copy number variation (CNV) variation in stroke susceptibility and outcome has yet to be explored. The Copy Number Variation and Stroke (CaNVAS) Risk and Outcome study addresses this knowledge gap. Methods Over 24,500 well-phenotyped IS cases, including IS subtypes, and over 43,500 controls have been identified, all with readily available genotyping on GWAS and exome arrays, with case measures of stroke outcome. To evaluate CNV-associated stroke risk and stroke outcome it is planned to: 1) perform Risk Discovery using several analytic approaches to identify CNVs that are associated with the risk of IS and its subtypes, across the age-, sex- and ethnicity-spectrums; 2) perform Risk Replication and Extension to determine whether the identified stroke-associated CNVs replicate in other ethnically diverse datasets and use biomarker data (e.g. methylation, proteomic, RNA, miRNA, etc.) to evaluate how the identified CNVs exert their effects on stroke risk, and lastly; 3) perform outcome-based Replication and Extension analyses of recent findings demonstrating an inverse relationship between CNV burden and stroke outcome at 3 months (mRS), and then determine the key CNV drivers responsible for these associations using existing biomarker data. Results The results of an initial CNV evaluation of 50 samples from each participating dataset are presented demonstrating that the existing GWAS and exome chip data are excellent for the planned CNV analyses. Further, some samples will require additional considerations for analysis, however such samples can readily be identified, as demonstrated by a sample demonstrating clonal mosaicism. Conclusion The CaNVAS study will cost-effectively leverage the numerous advantages of using existing case-control data sets, exploring the relationships between CNV and IS and its subtypes, and outcome at 3 months, in both men and women, in those of African and European-Caucasian descent, this, across the entire adult-age spectrum. Copyright: This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.
  •  
5.
  • Franceschini, N., et al. (författare)
  • GWAS and colocalization analyses implicate carotid intima-media thickness and carotid plaque loci in cardiovascular outcomes
  • 2018
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Carotid artery intima media thickness (cIMT) and carotid plaque are measures of subclinical atherosclerosis associated with ischemic stroke and coronary heart disease (CHD). Here, we undertake meta-analyses of genome-wide association studies (GWAS) in 71,128 individuals for cIMT, and 48,434 individuals for carotid plaque traits. We identify eight novel susceptibility loci for cIMT, one independent association at the previously-identified PINX1 locus, and one novel locus for carotid plaque. Colocalization analysis with nearby vascular expression quantitative loci (cis-eQTLs) derived from arterial wall and metabolic tissues obtained from patients with CHD identifies candidate genes at two potentially additional loci, ADAMTS9 and LOXL4. LD score regression reveals significant genetic correlations between cIMT and plaque traits, and both cIMT and plaque with CHD, any stroke subtype and ischemic stroke. Our study provides insights into genes and tissue-specific regulatory mechanisms linking atherosclerosis both to its functional genomic origins and its clinical consequences in humans. © 2018, The Author(s).
  •  
6.
  • Mishra, A., et al. (författare)
  • Stroke genetics informs drug discovery and risk prediction across ancestries
  • 2022
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 611
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.
  •  
7.
  • Olsson, Maja, 1975, et al. (författare)
  • Genome-wide analysis of genetic determinants of circulating factorVII-activating protease (FSAP) activity
  • 2018
  • Ingår i: Journal of Thrombosis and Haemostasis. - : Elsevier BV. - 1538-7933 .- 1538-7836. ; 16:10, s. 2024-2034
  • Tidskriftsartikel (refereegranskat)abstract
    • Background FactorVII-activating protease (FSAP) has roles in both coagulation and fibrinolysis. Recent data indicate its involvement in several other processes, such as vascular remodeling and inflammation. Plasma FSAP activity is highly variable among healthy individuals and, apart from the low-frequency missense variant Marburg-I (rs7080536) in the FSAP-encoding gene HABP2, determinants of this variation are unclear. Objectives To identify novel genetic variants within and outside of the HABP2 locus that influence circulating FSAP activity. Patients/Methods We performed an exploratory genome-wide association study (GWAS) on plasma FSAP activity amongst 3230 Swedish subjects. Directly genotyped rare variants were also analyzed with gene-based tests. Using GWAS, we confirmed the strong association between the Marburg-I variant and FSAP activity. HABP2 was also significant in the gene-based analysis, and remained significant after exclusion of Marburg-I carriers. This was attributable to a rare HABP2 stop variant (rs41292628). Carriers of this stop variant showed a similar reduction in FSAP activity as Marburg-I carriers, and this finding was replicated. A secondary genome-wide significant locus was identified at a 5p15 locus (rs35510613), and this finding requires future replication. This common variant is located upstream of ADCY2, which encodes a protein catalyzing the formation of cAMP. Results and Conclusions This study verified the Marburg-I variant to be a strong regulator of FSAP activity, and identified an HABP2 stop variant with a similar impact on FSAP activity. A novel locus near ADCY2 was identified as a potential additional regulator of FSAP activity.
  •  
8.
  • Olsson, Sandra, 1976, et al. (författare)
  • Genetic Variation Within the Interleukin-1 Gene Cluster and Ischemic Stroke
  • 2012
  • Ingår i: Stroke. - : Ovid Technologies (Wolters Kluwer Health). - 0039-2499 .- 1524-4628. ; 43:9, s. 2278-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and Purpose-Evidence is emerging that inflammation plays a key role in the pathophysiology of ischemic stroke (IS). The aim of this study was to investigate whether genetic variation in the interleukin-1 alpha, interleukin-1 beta, and interleukin-1 receptor antagonist genes (IL1A, IL1B, and IL1RN) is associated with IS and/or any etiologic subtype of IS. Methods-Twelve tagSNPs were analyzed in the Sahlgrenska Academy Study on Ischemic Stroke (SAHLSIS), which comprises 844 patients with IS and 668 control subjects. IS subtypes were defined according to the Trial of Org 10172 in Acute Stroke Treatment criteria in SAHLSIS. The Lund Stroke Register and the Malmo Diet and Cancer study were used as a replication sample for overall IS (in total 3145 patients and 1793 control subjects). Results-The single nucleotide polymorphism rs380092 in IL1RN showed an association with overall IS in SAHLSIS (OR, 1.21; 95% CI, 1.02-1.43; P = 0.03), which was replicated in the Lund Stroke Register and the Malmo Diet and Cancer study sample. An association was also detected in all samples combined (OR, 1.12; 95% CI, 1.04 -1.21; P = 0.03). Three single nucleotide polymorphisms in IL1RN (including rs380092) were nominally associated with the subtype of cryptogenic stroke in SAHLSIS, but the statistical significance did not remain after correction for multiple testing. Furthermore, increased plasma levels of interleukin-1 receptor antagonist were observed in the subtype of cryptogenic stroke compared with controls. Conclusion-This comprehensive study, based on a tagSNP approach and replication, presents support for the role of IL1RN in overall IS. (Stroke. 2012; 43: 2278-2282.)
  •  
9.
  • Stanne, Tara M, 1979, et al. (författare)
  • A Genome-wide Study of Common and Rare Genetic Variants Associated with Circulating Thrombin Activatable Fibrinolysis Inhibitor
  • 2018
  • Ingår i: Thrombosis and Haemostasis. - : Georg Thieme Verlag KG. - 0340-6245 .- 2567-689X. ; 118:2, s. 298-308
  • Tidskriftsartikel (refereegranskat)abstract
    • Thrombin-activatable fibrinolysis inhibitor (TAFI) plays a central role in haemostasis, and plasma TAFI concentrations are heritable. Candidate gene studies have identified several variants within the gene encoding TAFI, CPB2, that explain part of the estimated heritability. Here, we describe an exploratory genome-wide association study to identify novel variants within and outside of the CPB2 locus that influence plasma concentrations of intact TAFI and/or the extent of TAFI activation (measured by released TAFI activation peptide, TAFI-AP) amongst 3,260 subjects from Southern Sweden. We also explored the role of rare variants on the HumanExome BeadChip. We confirmed the association with previously reported common variants in CPB2 for both intact TAFI and TAFI-AP, and discovered novel associations with variants in putative CPB2 enhancers. We identified a gene-based association with intact TAFI at CPB2 (PSKAT-O = 2.8 x 10(-8)), driven by two novel rare nonsynonymous single nucleotide polymorphisms (SNPs; I420N and D177G). Carriers of the rare variant of D177G (rs140446990; MAF 0.2%) had lower intact TAFI and TAFI-AP concentrations compared with non-carriers (intact TAFI, geometricmean 53 vs. 78%, PT-test < 5 x 10(-7); TAFI-AP 63 vs. 99%, P(T-tes)t = 7.2 x 10(-4)). For TAFI-AP, we identified a genome-wide significant association at an intergenic region of chromosome 3p14.1 and five gene-based associations (all PSKAT-O = 5 x 10(-6)). Using well-characterized assays together with a genome-wide association study and a rare-variant approach, we verified CPB2 to be the primary determinant of TAFI concentrations and identified putative secondary loci (candidate variants and genes) associated with intact TAFI and TAFI-AP that require independent validation.
  •  
10.
  • Söderholm, M, et al. (författare)
  • Exome array analysis of ischaemic stroke : results from a southern Swedish study
  • 2016
  • Ingår i: European Journal of Neurology. - : Wiley. - 1351-5101 .- 1468-1331. ; 23:12, s. 1722-1728
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND AND PURPOSE: Genome-wide association (GWA) studies have identified a few risk loci for ischaemic stroke, but these variants explain only a small part of the genetic contribution to the disease. Coding variants associated with amino acid substitutions or premature termination of protein synthesis could have a large effect on disease risk. We performed an exome array analysis for ischaemic stroke.METHODS: Patients with ischaemic stroke (n = 2385) and control subjects (n = 6077) from three Swedish studies were genotyped with the Illumina HumanOmniExpressExome BeadChip. Single-variant association analysis and gene-based tests were performed of exome variants with minor allele frequency of < 5%. A separate GWA analysis was also performed, based on 700 000 genotyped common markers and subsequent imputation.RESULTS: No exome variant or gene was significantly associated with all ischaemic stroke after Bonferroni correction (all P > 1.8 × 10(-6) for single-variant and >4.15 × 10(-6) for gene-based analysis). The strongest association in single-variant analysis was found for a missense variant in the DNAH11 gene (rs143362381; P = 5.01 × 10(-6) ). In gene-based tests, the strongest association was for the ZBTB20 gene (P = 7.9 × 10(-5) ). The GWA analysis showed that the sample was homogenous (median genomic inflation factor = 1.006). No genome-wide significant association with overall ischaemic stroke risk was found. However, previously reported associations for the PITX2 and ZFHX3 gene loci with cardioembolic stroke subtype were replicated (P = 7 × 10(-15) and 6 × 10(-3) ).CONCLUSIONS: This exome array analysis did not identify any single variants or genes reaching the pre-defined significance level for association with ischaemic stroke. Further studies on exome variants should be performed in even larger, well-defined and subtyped samples.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy