SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jin Guangfu) ;lar1:(lu)"

Sökning: WFRF:(Jin Guangfu) > Lunds universitet

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jin, Guangfu, et al. (författare)
  • Genome-wide Association Study Identifies Loci at ATF7IP and KLK2 Associated with Percentage of Circulating Free PSA
  • 2013
  • Ingår i: Neoplasia. - : Elsevier BV. - 1522-8002 .- 1476-5586. ; 15:1, s. 95-95
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Percentage of free-to-total prostate-specific antigen (%fPSA) is an independent predictor of risk for prostate cancer among men with modestly elevated level of total PSA (tPSA) in blood. Physiological and pathological factors have been shown to influence the %fPSA value and diagnostic accuracy. MATERIALS/METHODS: To evaluate genetic determinants of %fPSA, we conducted a genome-wide association study of serum %fPSA by genotyping 642,584 single nucleotide polymorphisms (SNPs) in 3192 men of European ancestry, each with a tPSA level of 2.5 to 10 ng/ml, that were recruited in the REduction by DUtasteride of Prostate Cancer Events study. Single nucleotide polymorphisms (SNPs) with P < 10(-5) were further evaluated among the controls of a population-based case-control study in Sweden (2899 prostate cancer cases and 1722 male controls), including 464 controls having tPSA levels of 2.5 to 10 ng/ml. RESULTS: We identified two loci that were associated with %fPSA at a genome-wide significance level (P < 5 x 10(-8)). The first associated SNP was rs3213764 (P = 6.45 x 10(-10)), a nonsynonymous variant (K530R) in the ATF7IP gene at 12p13. This variant was also nominally associated with tPSA (P = .015). The second locus was rs1354774 (P = 1.25 x 10(-12)), near KLK2 at 19q13, which was not associated with tPSA levels, and is separate from the rs17632542 locus at KLK3 that was previously associated with tPSA levels and prostate cancer risk. Neither rs3213764 nor rs1354774 was associated with prostate cancer risk or aggressiveness. CONCLUSIONS: These findings demonstrate that genetic variants at ATF7IP and KLK2 contribute to the variance of %fPSA.
  •  
2.
  • Qin, Na, et al. (författare)
  • Comprehensive functional annotation of susceptibility variants identifies genetic heterogeneity between lung adenocarcinoma and squamous cell carcinoma
  • 2021
  • Ingår i: Frontiers of Medicine. - : Springer-Verlag New York. - 2095-0217 .- 2095-0225. ; 15:2, s. 275-291
  • Tidskriftsartikel (refereegranskat)abstract
    • Although genome-wide association studies have identified more than eighty genetic variants associated with non-small cell lung cancer (NSCLC) risk, biological mechanisms of these variants remain largely unknown. By integrating a large-scale genotype data of 15 581 lung adenocarcinoma (AD) cases, 8350 squamous cell carcinoma (SqCC) cases, and 27 355 controls, as well as multiple transcriptome and epigenomic databases, we conducted histology-specific meta-analyses and functional annotations of both reported and novel susceptibility variants. We identified 3064 credible risk variants for NSCLC, which were overrepresented in enhancer-like and promoter-like histone modification peaks as well as DNase I hypersensitive sites. Transcription factor enrichment analysis revealed that USF1 was AD-specific while CREB1 was SqCC-specific. Functional annotation and gene-based analysis implicated 894 target genes, including 274 specifics for AD and 123 for SqCC, which were overrepresented in somatic driver genes (ER = 1.95,P= 0.005). Pathway enrichment analysis and Gene-Set Enrichment Analysis revealed that AD genes were primarily involved in immune-related pathways, while SqCC genes were homologous recombination deficiency related. Our results illustrate the molecular basis of both well-studied and new susceptibility loci of NSCLC, providing not only novel insights into the genetic heterogeneity between AD and SqCC but also a set of plausible gene targets for post-GWAS functional experiments.
  •  
3.
  • Wang, Yuzhuo, et al. (författare)
  • Association Analysis of Driver Gene-Related Genetic Variants Identified Novel Lung Cancer Susceptibility Loci with 20,871 Lung Cancer Cases and 15,971 Controls
  • 2020
  • Ingår i: Cancer Epidemiology, Biomarkers and Prevention. - : American Association for Cancer Research. - 1055-9965 .- 1538-7755. ; 29:7, s. 1423-1429
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: A substantial proportion of cancer driver genes (CDG) are also cancer predisposition genes. However, the associations between genetic variants in lung CDGs and the susceptibility to lung cancer have rarely been investigated.Methods: We selected expression-related single-nucleotide polymorphisms (eSNP) and nonsynonymous variants of lung CDGs, and tested their associations with lung cancer risk in two large-scale genome-wide association studies (20,871 cases and 15,971 controls of European descent). Conditional and joint association analysis was performed to identify independent risk variants. The associations of independent risk variants with somatic alterations in lung CDGs or recurrently altered pathways were investigated using data from The Cancer Genome Atlas (TCGA) project.Results: We identified seven independent SNPs in five lung CDGs that were consistently associated with lung cancer risk in discovery (P < 0.001) and validation (P < 0.05) stages. Among these loci, rs78062588 in TPM3 (1q21.3) was a new lung cancer susceptibility locus (OR = 0.86, P = 1.65 x 10(-6)). Subgroup analysis by histologic types further identified nine lung CDGs. Analysis of somatic alterations found that in lung adenocarcinomas, rs78062588[C] allele (TPM3 in 1q21.3) was associated with elevated somatic copy number of TPM3 (OR = 1.16, P = 0.02). In lung adenocarcinomas, rs1611182 (HLA-A in 6p22.1) was associated with truncation mutations of the transcriptional misregulation in cancer pathway (OR = 0.66, P = 1.76 x 10(-3)).Conclusions: Genetic variants can regulate functions of lung CDGs and influence lung cancer susceptibility. Impact: Our findings might help unravel biological mechanisms underlying lung cancer susceptibility.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy