SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson Patrik 1969) ;pers:(Scheers Johan 1979)"

Sökning: WFRF:(Johansson Patrik 1969) > Scheers Johan 1979

  • Resultat 1-10 av 23
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Böhme, Solveig, et al. (författare)
  • Lithium-ion batteries based on SnO2 electrodes and a LiTFSI-Pip14TFSI ionic liquid electrolyte
  • 2017
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 1945-7111 .- 0013-4651. ; 164:4, s. A701-A708
  • Tidskriftsartikel (refereegranskat)abstract
    • The performance of lithium-ion batteries (LIBs) comprising SnO2 electrodes and an ionic liquid (IL) based electrolyte, i.e., 0.5 M LiTFSI in Pip14TFSI, has been studied at room temperature (i.e., 22°C) and 80°C. While the high viscosity and low conductivity of the electrolyte resulted in high overpotentials and low capacities at room temperature, the SnO2 performance at 80°C was found to be analogous to that seen at room temperature using a standard LP40 electrolyte (i.e., 1 M LiPF6 dissolved in 1:1 ethylene carbonate and diethyl carbonate). Significant reduction of the IL was, however, found at 80°C, which resulted in low coulombic efficiencies during the first 20 cycles, most likely due to a growing SEI layer and the formation of soluble IL reduction products. X-ray photoelectron spectroscopy studies of the cycled SnO2 electrodes indicated the presence of an at least 10 nm thick solid electrolyte interphase (SEI) layer composed of inorganic components such as lithium fluoride, sulfates, and nitrides as well as organic species containing C-H, C-F and C-N bonds.
  •  
2.
  • Hannauer, J., et al. (författare)
  • The Quest for Polysulfides in Lithium-Sulfur Battery Electrolytes: An Operando Confocal Raman Spectroscopy Study
  • 2015
  • Ingår i: ChemPhysChem. - : Wiley. - 1439-7641 .- 1439-4235. ; 16:13, s. 2755-2759
  • Tidskriftsartikel (refereegranskat)abstract
    • Confocal Raman spectra of a lithium-sulfur battery electrolyte are recorded operando in a depth-of-discharge resolved manner for an electrochemical cell with a realistic electrolyte/sulfur loading ratio. The evolution of various possible polysulfides is unambiguously identified by combining Raman spectroscopy data with DFT simulations.
  •  
3.
  • Kerner, Manfred, 1984, et al. (författare)
  • Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions?
  • 2015
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 17:29, s. 19569-19581
  • Tidskriftsartikel (refereegranskat)abstract
    • Several IL based electrolytes with an imidazolium cation (EMI) have been investigated trying to elucidate a possible beneficial effect of mixing FSI and TFSI anions in terms of physico-chemical properties and especially Li+ solvation. All electrolytes were evaluated in terms of phase transitions, densities and viscosities, thermal stabilities, ionic conductivities and local structure, i.e. charge carriers. The electrolytes with up to 20% of Li-salts showed to be promising for high temperature lithium ion battery application (ca. 100°C) and a synergetic effect of having mixed anions is discernible with the LiTFSI0.2EMIFSI0.8 electrolyte giving the best overall performance. The determination of the charge carriers revealed the SN to be ca. 2 for all analysed electrolytes, and proved the analysis of the mixed anion electrolytes to be challenging and inherently leads to an ambiguous picture of the Li+ solvation.
  •  
4.
  • Kerner, Manfred, 1984, et al. (författare)
  • Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts
  • 2016
  • Ingår i: RSC Advances. - : Royal Society of Chemistry (RSC). - 2046-2069. ; 6:28, s. 23327-23334
  • Tidskriftsartikel (refereegranskat)abstract
    • The demand for lithium-ion battery (LIB) electrolytes with improved thermal stabilities, and maintained high ionic conductivities and electrochemical stabilities, has been the driving force behind the use of the lithium bis(fluorosulfonyl)imide (LiFSI) salt as a possible replacement for LiPF6. However, contradictory results have questioned its promising thermal stability and noncorrosive properties. Here the performance of three commercial LiFSI salts is compared with the focus on thermal stability and phase transitions together with a vibrational spectroscopy based assessment of the salt purity and decomposition products. The salts are found to differ significantly in their thermal stabilities as determined by both dynamic and isothermal TGA. In contrast, the FT-IR spectra of the salts are almost identical, while several additional bands are identified in the Raman spectra of the least stable salt. The latter allows for a discussion of the origin and role of salt impurities for the observed thermal (in-)stability. Overall the three salts show differences, but these differences are not straightforward to couple to any changes in the performance of Li/LiFePO4 cells using electrolytes based on these salts, but may nevertheless have implications on battery life-length and for application in various other battery technologies.
  •  
5.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Characterization of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide-based polymer electrolytes for high safety lithium batteries
  • 2013
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 224:15 Feb. 2013, s. 93-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly(vinylidene difluoride-co-hexafluoropropylene) (PVdF-HFP) membrane was prepared by electrospinning. The membranes served as host matrices for the preparation of ionic liquid-based polymer electrolytes (ILPEs) by activation with non-volatile, highly thermally stable, and safe room temperature ionic liquid (RTIL) electrolytes; N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py14TFSI) complexed with 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). In this work, the first combination of electrospun PVdF-HFP fiber polymer host and pyrrolidinium-based ionic electrolyte was employed for highly stable lithium batteries. The ILPE exhibited low Li+-TFSI coordination, low crystallinity, high thermal stability, high electrochemical stability, and high ionic conductivity with a maximum of 1.1 x 10(-4) S cm(-1) at 0 degrees C. The ILPE exhibited good compatibility with a LiFePO4 electrode on storage and good charge-discharge performance in Li/ILPE/LiFePO4!
  •  
6.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Nano-fibrous polymer films for organic rechargeable batteries
  • 2013
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 1:7, s. 2426-2430
  • Tidskriftsartikel (refereegranskat)abstract
    • We propose a nano-fibrous polymer (NFP) film, fabricated by electrospinning poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA), as a key component in high performance organic batteries. The new strategy with a NFP film enables extraordinary rate capability and excellent cyclability, due to its special morphology. Moreover, the NFP film enhances the flexibility of the electrode at a low cost and prevents dissolution of PTMA into the electrolyte.
  •  
7.
  •  
8.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Role of lithium precursor in the structure and electrochemical performance of LiFePO4
  • 2013
  • Ingår i: Scripta Materialia. - : Elsevier BV. - 1359-6462. ; 69:10, s. 716-719
  • Tidskriftsartikel (refereegranskat)abstract
    • This study highlights the importance of precursor selection. Although a great understanding of the materials properties of LiFePO4 has been achieved, the role of the lithium precursor has been almost ignored. The lithium precursor used for synthesis of LiFePO4 influences the structure, particle size and electrochemical properties. A lithium precursor dependent structural change of LiFePO4 was observed from Rietveld refinement; using Li2CO3 instead of LiOH as lithium precursor resulted in a smaller crystal size and improved electrochemical properties.
  •  
9.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Towards flexible secondary lithium batteries: polypyrrole-LiFePO4 thin electrodes with polymer electrolytes
  • 2012
  • Ingår i: Journal of Materials Chemistry. - : Royal Society of Chemistry (RSC). - 1364-5501 .- 0959-9428. ; 22:30, s. 15045-15049
  • Tidskriftsartikel (refereegranskat)abstract
    • A thin flexible polypyrrole-lithium iron phosphate (PPy-LiFePO4) based cathode has been fabricated. A slurry containing carbon black, a binder and the active material prepared by direct polymerization of pyrrole on the surface of LiFePO4 (LFP) was spread on an Al/carbon film substrate by the doctor blade method. Transmission electron micrographs reveal that PPy nanoparticles form a web like structure over the surface of LFP particles. After doping with lithium ions the PPy network becomes conducting. When evaluated as a cathode of 180 mu m thickness together with a gel polymer electrolyte and a lithium anode, the charge-discharge performance reveals that the electrochemical properties of LFP are influenced to a considerable extent by the PPy. The cells show high initial discharge capacities of 135 and 110 mA h g(-1) for 0.041 (C/10) and 0.21 (C/2) mA cm(-2), respectively, and high active material utilization. Furthermore the cells exhibit stable cycle properties even at 0.21 mA cm(-2) with a low capacity fade per cycle (similar to 0.3%).
  •  
10.
  • Scheers, Johan, 1979, et al. (författare)
  • A review of electrolytes for lithium-sulphur batteries
  • 2014
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 255, s. 204-218
  • Forskningsöversikt (refereegranskat)abstract
    • To optimize the electrolyte is one of the most important directions to take in order to improve the Li/S battery in terms of performance - especially cell cyclability, rate capability, safety, and life-span. In this review we examine the state of the art for different choices of electrolytes; concepts, design, and materials, and how the resulting chemical and physical properties of the electrolyte affect the overall Li/S battery performance. The objective is to create an overall assessment of electrolytes in use at present and to provide a thorough basis for rational selection of future electrolytes for Li/S batteries.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 23

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy