SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson Patrik 1969) ;pers:(Wieczorek W.)"

Sökning: WFRF:(Johansson Patrik 1969) > Wieczorek W.

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Armand, M., et al. (författare)
  • Review-Development of Huckel Type Anions: From Molecular Modeling to Industrial Commercialization. A Success Story
  • 2020
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 1945-7111 .- 0013-4651. ; 167:7
  • Forskningsöversikt (refereegranskat)abstract
    • This paper reviews the battery electrolyte technologies involving Huckel-type salts as a major electrolyte component. The concept was initially proposed by M. Armand in 1995 and then explored by several research groups. In the present review studies on the optimization of the electrolyte composition starting from molecular modeling through enhancing the yield of the salt synthesis to structural characterization and electrochemical performance are described. Furthermore, the use of the optimized electrolytes in a variety of lithium-ion and post-lithium batteries is presented and discussed. Finally, the commercialization of the up to date technology by Arkema is discussed as well as the performance of the present Huckel anion based electrolytes as compared to other marketed electrolyte technologies.
  •  
2.
  • Jankowski, Piotr, 1990, et al. (författare)
  • Chemically soft solid electrolyte interphase forming additives for lithium-ion batteries
  • 2018
  • Ingår i: Journal of Materials Chemistry A. - : Royal Society of Chemistry (RSC). - 2050-7488 .- 2050-7496. ; 6:45, s. 22609-22618
  • Tidskriftsartikel (refereegranskat)abstract
    • The solid electrolyte interphase (SEI) layer is a key element of lithium-ion batteries (LIBs) enabling stable operation and significantly affecting the cycling performance including life-length. Here we present the concept of chemically soft SEI-forming additives, created by introducing aromatic ring based derivatives of already well-known SEI-formers to render them chemically soft, resulting in 1,3,2-benzodioxathiole 2,2-dioxide (DTDPh), 3H-1,2-benzoxathiole 2,2-dioxide (PSPh), and 1,4,2-benzodioxathiine 2,2-dioxide (PSOPh). A computational DFT based comparison predicts promise with respect to both early and controlled reduction processes. These predictions are verified by basic electrochemical studies targeting appropriate additive reduction potentials i.e. prior to any electrolyte solvent or salt decomposition. In addition, the decomposition paths of the SEI-formers are projected and the end products compared with spectroscopic data for the SEI-layers formed in LIB cells. The SEI-layers formed finally show very good properties in terms of improved capacity retention, improved coulombic efficiency, and reduced resistance for the graphite/electrolyte/LFP full cells made, especially observed for PSOPh. That is due to the preferred C-O bond breaking mechanism, observed also for DTDPh, and supported by the S-C bond breaking mechanism, together resulting in well conductive and good adhesion properties of the SEI-layers. This is expedited by higher softness, eventuating in a formation process stabilizing some of the radicals and/or lowering the kinetic barriers. These positive effects are confirmed both when applying a commercial style electrolyte and for a new generation electrolyte based on the LiTDI salt, where suppression of the TDI anion reduction is truly crucial.
  •  
3.
  • Jankowski, Piotr, 1990, et al. (författare)
  • Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments
  • 2018
  • Ingår i: ACS Applied Energy Materials. - : American Chemical Society (ACS). - 2574-0962. ; 1, s. 2582-2591
  • Tidskriftsartikel (refereegranskat)abstract
    • Electrolyte additives are pivotal for stabilization of lithium-ion batteries, by suppressing capacity loss through creation of an engineered solid-electrolyte-interphase-layer (SEI-layer) at the negative electrode and thereby increasing lifetime. Here, we compare four different sulfur-containing 5-membered-ring molecules as SEI-formers: 1,3,2-dioxathiolane-2,2-dioxide (DTD), propane-1,3-sultone (PS), sulfopropionic acid anhydride (SPA), and prop-1-ene-1,3-sultone (PES). Density functional theory calculations and electrochemical measurements both confirm appropriate reduction potentials. For a connection of the protective properties of the SEIs formed to the chemical structure of the additives, the decomposition paths are computed and compared with spectroscopic data for the negative electrode surface. The performance of full-cells cycled using a commercial electrolyte and the different additives reveals the formation of organic dianions to play a crucial beneficial role, more so for DTD and SPA than for PS and PES.
  •  
4.
  • Jankowski, Piotr, 1990, et al. (författare)
  • New boron based salts for lithium-ion batteries using conjugated ligands
  • 2016
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 18:24, s. 16274-16280
  • Tidskriftsartikel (refereegranskat)abstract
    • A new anion design concept, based on combining a boron atom as the central atom and conjugated systems as ligands, is presented as a route for finding alternative Li-salts for lithium-ion batteries. The properties of a wide range of novel anions designed in this way have been evaluated by DFT calculations focusing on three different fundamental success factors/measures: the strength of the cation-anion interaction, ultimately determining both the solubility and the ionic conductivity, the oxidation limit, determining their possible use vs. high voltage cathodes, and the reduction stability, revealing a possible role of the anion in the SEI-formation at the anode. For a few anions superior properties vs. today's existing or suggested anions are predicted, especially the very low cation-anion interaction strengths are promising features. The design route itself is shown to be versatile in determining the correlation between different choices of ligands and the resulting overall properties - where the most striking feature is the decreased lithium cation interaction energy upon using the (1Z,3Z)-buta-1,3-diene-1,2,3,4-tetracarbonitrile ligands. This also opens avenues for the further design of novel anions beyond those with a boron central atom.
  •  
5.
  • Jankowski, Piotr, 1990, et al. (författare)
  • SEI-forming Electrolyte Additives for Lithium-ion Batteries: Development and Benchmarking of Computational Approaches
  • 2017
  • Ingår i: Journal of Molecular Modeling. - : Springer Science and Business Media LLC. - 0948-5023 .- 1610-2940. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • SEI-forming additives play an important role in lithium-ion batteries, and the key to improving battery functionality is to determine if, how, and when these additives are reduced. Here, we tested a number of computational approaches and methods to determine the best way to predict and describe the properties of the additives. A wide selection of factors were evaluated, including the influences of the solvent and lithium cation as well as the DFT functional and basis set used. An optimized computational methodology was employed to assess the usefulness of different descriptors.
  •  
6.
  • Jankowski, Piotr, 1990, et al. (författare)
  • TFSI and TDI Anions: Probes for Solvate Ionic Liquid and Disproportionation-Based Lithium Battery Electrolytes
  • 2017
  • Ingår i: Journal of Physical Chemistry Letters. - : American Chemical Society (ACS). - 1948-7185. ; 8:15, s. 3678-3682
  • Tidskriftsartikel (refereegranskat)abstract
    • Highly concentrated electrolytes based on Li-salts and chelating solvents, such as glymes, are promising as electrolytes for lithium batteries. This is due to their unique properties, such as higher electrochemical stabilities, compliance with high-voltage electrodes, low volatility and flammability, and inertness toward aluminum current collector corrosion. The nature of these properties originates from the molecular-level structure created in either solvate ionic liquids (Sits) or the less common ionic aggregates by disproportionation reactions. The nature of the anion plays a crucial role, and here, we present a computational study using TFSI and TDI anions as probes, revealing increasing differences upon increased salt concentration. TFSI-based electrolytes preferably form SILs, while TDI-based electrolytes form ionic aggregates. The latter lead to an unexpected creation of "free" cationic species even at (very) high salt concentrations and thus promise of ample lithium ion transport.
  •  
7.
  • Kim, Jae-Kwang, 1978, et al. (författare)
  • Characterization of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide-based polymer electrolytes for high safety lithium batteries
  • 2013
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 224:15 Feb. 2013, s. 93-98
  • Tidskriftsartikel (refereegranskat)abstract
    • Poly(vinylidene difluoride-co-hexafluoropropylene) (PVdF-HFP) membrane was prepared by electrospinning. The membranes served as host matrices for the preparation of ionic liquid-based polymer electrolytes (ILPEs) by activation with non-volatile, highly thermally stable, and safe room temperature ionic liquid (RTIL) electrolytes; N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide (Py14TFSI) complexed with 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). In this work, the first combination of electrospun PVdF-HFP fiber polymer host and pyrrolidinium-based ionic electrolyte was employed for highly stable lithium batteries. The ILPE exhibited low Li+-TFSI coordination, low crystallinity, high thermal stability, high electrochemical stability, and high ionic conductivity with a maximum of 1.1 x 10(-4) S cm(-1) at 0 degrees C. The ILPE exhibited good compatibility with a LiFePO4 electrode on storage and good charge-discharge performance in Li/ILPE/LiFePO4!
  •  
8.
  • Scheers, Johan, 1979, et al. (författare)
  • Anion-Additive Interactions Studied by Ab Initio Calculations and Raman Spectroscopy.
  • 2009
  • Ingår i: Journal of the Electrochemical Society. - : The Electrochemical Society. - 1945-7111 .- 0013-4651. ; 156:4, s. A305-A308
  • Tidskriftsartikel (refereegranskat)abstract
    • The ability of the caLi x (6)pyrrole (C6P) additive to form complexes with several anions is addressed. Ab initio calculations and Raman spectroscopy are used in combination to evaluate the coordination preferences of C6P in the gas phase and to probe the existence of C6P-anion complexes in solution. Favorable reaction energies are calculated for the formation of 1:1 coordination complexes from the isolated species, with the following anion preference: BF 4 - AsF 6 - > ClO 4 - ≈CF 3 SO 3 - > PF 6 - > I - . In connection with available macroscopic data, the calculated results support the assumption of anion coordination by C6P as a mechanism for lithium transference number enhancement. Upon anion coordination to the additive, calculated vibrational spectra show large differences in the N-H stretching region (∼3400 cm -1 ). However, at lower wavenumbers (
  •  
9.
  • Scheers, Johan, 1979, et al. (författare)
  • Benzimidazole and imidazole lithium salts for battery electrolytes
  • 2010
  • Ingår i: Journal of Power Sources. - : Elsevier BV. - 0378-7753. ; 195:18, s. 6081-6087
  • Konferensbidrag (refereegranskat)abstract
    • The intrinsic anion oxidation potential (Delta E-v) and lithium ion pair dissociation energy (Delta E-d) are two important properties for predicting the potential use of new lithium salts for battery electrolytes. In this work several cyano substituted fluoroalkylated benzimidazole and imidazole anions have been investigated computationally to obtain Delta E-v and Delta E-d. Varying the number and position of cyano substituents results in large effects on the electrochemical stability of the anion and on the possible lithium ion pair configurations. The lengthening of the fluoroalkyl group introduces several new stable ion pair configurations and a small increase in anion oxidation stability. The most promising fluoroalkylated anions in the present work are the 4,5,6,7-tetracyano-2-fluoroalkylated benzimidazolides (TTB and PTB), with oxidation potentials suitable for high voltage Li-ion battery applications (
  •  
10.
  • Scheers, Johan, 1979, et al. (författare)
  • Ion-ion and ion-solvent interactions in lithium imidazolide electrolytes studied by Raman spectroscopy and DFT models
  • 2011
  • Ingår i: Physical Chemistry Chemical Physics. - : Royal Society of Chemistry (RSC). - 1463-9084 .- 1463-9076. ; 13:23, s. 11136-11147
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular level interactions are of crucial importance for the transport properties and overall performance of ion conducting electrolytes. In this work we explore ion-ion and ion-solvent interactions in liquid and solid polymer electrolytes of lithium 4,5-dicyano-(2-trifluoromethyl)imidazolide (LiTDI)-a promising salt for lithium battery applications-using Raman spectroscopy and density functional theory calculations. High concentrations of ion associates are found in LiTDI: acetonitrile electrolytes, the vibrational signatures of which are transferable to PEO-based LiTDI electrolytes. The origins of the spectroscopic changes are interpreted by comparing experimental spectra with simulated Raman spectra of model structures. Simple ion pair models in vacuum identify the imidazole nitrogen atom of the TDI anion to be the most important coordination site for Li+, however, including implicit or explicit solvent effects lead to qualitative changes in the coordination geometry and improved correlation of experimental and simulated Raman spectra. To model larger aggregates, solvent effects are found to be crucial, and we finally suggest possible triplet and dimer ionic structures in the investigated electrolytes. In addition, the effects of introducing water into the electrolytes-via a hydrate form of LiTDI-are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy