SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jones R) ;hsvcat:4"

Sökning: WFRF:(Jones R) > Lantbruksvetenskap

  • Resultat 1-10 av 17
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Groenen, M. A., et al. (författare)
  • Analyses of pig genomes provide insight into porcine demography and evolution
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 491:7424, s. 393-398
  • Tidskriftsartikel (refereegranskat)abstract
    • For 10,000 years pigs and humans have shared a close and complex relationship. From domestication to modern breeding practices, humans have shaped the genomes of domestic pigs. Here we present the assembly and analysis of the genome sequence of a female domestic Duroc pig (Sus scrofa) and a comparison with the genomes of wild and domestic pigs from Europe and Asia. Wild pigs emerged in South East Asia and subsequently spread across Eurasia. Our results reveal a deep phylogenetic split between European and Asian wild boars approximately 1 million years ago, and a selective sweep analysis indicates selection on genes involved in RNA processing and regulation. Genes associated with immune response and olfaction exhibit fast evolution. Pigs have the largest repertoire of functional olfactory receptor genes, reflecting the importance of smell in this scavenging animal. The pig genome sequence provides an important resource for further improvements of this important livestock species, and our identification of many putative disease-causing variants extends the potential of the pig as a biomedical model.
  •  
2.
  • Franz, D, et al. (författare)
  • Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe´s terrestrial ecosystems: a review
  • 2018
  • Ingår i: International Agrophysics. - : Walter de Gruyter GmbH. - 0236-8722 .- 2300-8725. ; 32, s. 439-455
  • Tidskriftsartikel (refereegranskat)abstract
    • Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO2, CH4, N2O, H2O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value.
  •  
3.
  • Quentin, Audrey G, et al. (författare)
  • Non-structural carbohydrates in woody plants compared among laboratories.
  • 2015
  • Ingår i: Tree physiology. - : Oxford University Press (OUP). - 1758-4469 .- 0829-318X. ; 35:11, s. 1146-1165
  • Tidskriftsartikel (refereegranskat)abstract
    • Non-structural carbohydrates (NSC) in plant tissue are frequently quantified to make inferences about plant responses to environmental conditions. Laboratories publishing estimates of NSC of woody plants use many different methods to evaluate NSC. We asked whether NSC estimates in the recent literature could be quantitatively compared among studies. We also asked whether any differences among laboratories were related to the extraction and quantification methods used to determine starch and sugar concentrations. These questions were addressed by sending sub-samples collected from five woody plant tissues, which varied in NSC content and chemical composition, to 29 laboratories. Each laboratory analyzed the samples with their laboratory-specific protocols, based on recent publications, to determine concentrations of soluble sugars, starch and their sum, total NSC. Laboratory estimates differed substantially for all samples. For example, estimates for Eucalyptus globulus leaves (EGL) varied from 23 to 116 (mean = 56) mg g(-1) for soluble sugars, 6-533 (mean = 94) mg g(-1) for starch and 53-649 (mean = 153) mg g(-1) for total NSC. Mixed model analysis of variance showed that much of the variability among laboratories was unrelated to the categories we used for extraction and quantification methods (method category R(2) = 0.05-0.12 for soluble sugars, 0.10-0.33 for starch and 0.01-0.09 for total NSC). For EGL, the difference between the highest and lowest least squares means for categories in the mixed model analysis was 33 mg g(-1) for total NSC, compared with the range of laboratory estimates of 596 mg g(-1). Laboratories were reasonably consistent in their ranks of estimates among tissues for starch (r = 0.41-0.91), but less so for total NSC (r = 0.45-0.84) and soluble sugars (r = 0.11-0.83). Our results show that NSC estimates for woody plant tissues cannot be compared among laboratories. The relative changes in NSC between treatments measured within a laboratory may be comparable within and between laboratories, especially for starch. To obtain comparable NSC estimates, we suggest that users can either adopt the reference method given in this publication, or report estimates for a portion of samples using the reference method, and report estimates for a standard reference material. Researchers interested in NSC estimates should work to identify and adopt standard methods.
  •  
4.
  • Sutton, M. A., et al. (författare)
  • Dynamics of ammonia exchange with cut grassland : Strategy and implementation of the GRAMINAE Integrated Experiment
  • 2009
  • Ingår i: Biogeosciences. - : Copernicus Publications (on behalf of the European Geosciences Union). - 1726-4170 .- 1726-4189. ; 6:3, s. 309-331
  • Tidskriftsartikel (refereegranskat)abstract
    • A major international experiment on ammonia (NH3) biosphere-atmosphere exchange was conducted over intensively managed grassland at Braunschweig, Germany. The experimental strategy was developed to allow an integrated analysis of different features of NH3 exchange including: a) quantification of nearby emissions and advection effects, b) estimation of net NH3 fluxes with the canopy by a range of micrometeorological measurements, c) analysis of the sources and sinks of NH3 within the plant canopy, including soils and bioassay measurements, d) comparison of the effects of grassland management options on NH3 fluxes and e) assessment of the interactions of NH3 fluxes with aerosol exchange processes. Additional technical objectives included the inter-comparison of different estimates of sensible and latent heat fluxes, as well as continuous-gradient and Relaxed Eddy Accumulation (REA) systems for NH3 fluxes. The prior analysis established the spatial and temporal design of the experiment, allowing significant synergy between these objectives. The measurements were made at 7 measurement locations, thereby quantifying horizontal and vertical profiles, and covered three phases: a) tall grass canopy prior to cutting (7 days), b) short grass after cutting (7 days) and c) re-growing sward following fertilization with ammonium nitrate (10 days). The sequential management treatments allowed comparison of sources-sinks, advection and aerosol interactions under a wide range of NH3 fluxes. This paper describes the experimental strategy and reports the grassland management history, soils, environmental conditions and air chemistry during the experiment, finally summarizing how the results are coordinated in the accompanying series of papers.
  •  
5.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
6.
  • Bansal, Sheel, et al. (författare)
  • Practical Guide to Measuring Wetland Carbon Pools and Fluxes
  • 2023
  • Ingår i: Wetlands (Wilmington, N.C.). - : SPRINGER. - 0277-5212 .- 1943-6246. ; 43:8
  • Forskningsöversikt (refereegranskat)abstract
    • Wetlands cover a small portion of the world, but have disproportionate influence on global carbon (C) sequestration, carbon dioxide and methane emissions, and aquatic C fluxes. However, the underlying biogeochemical processes that affect wetland C pools and fluxes are complex and dynamic, making measurements of wetland C challenging. Over decades of research, many observational, experimental, and analytical approaches have been developed to understand and quantify pools and fluxes of wetland C. Sampling approaches range in their representation of wetland C from short to long timeframes and local to landscape spatial scales. This review summarizes common and cutting-edge methodological approaches for quantifying wetland C pools and fluxes. We first define each of the major C pools and fluxes and provide rationale for their importance to wetland C dynamics. For each approach, we clarify what component of wetland C is measured and its spatial and temporal representativeness and constraints. We describe practical considerations for each approach, such as where and when an approach is typically used, who can conduct the measurements (expertise, training requirements), and how approaches are conducted, including considerations on equipment complexity and costs. Finally, we review key covariates and ancillary measurements that enhance the interpretation of findings and facilitate model development. The protocols that we describe to measure soil, water, vegetation, and gases are also relevant for related disciplines such as ecology. Improved quality and consistency of data collection and reporting across studies will help reduce global uncertainties and develop management strategies to use wetlands as nature-based climate solutions.
  •  
7.
  •  
8.
  • Jayasiri, Subashini C., et al. (författare)
  • The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts
  • 2015
  • Ingår i: Fungal diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 74:1, s. 3-18
  • Tidskriftsartikel (refereegranskat)abstract
    • Taxonomic names are key links between various databases that store information on different organisms. Several global fungal nomenclural and taxonomic databases (notably Index Fungorum, Species Fungorum and MycoBank) can be sourced to find taxonomic details about fungi, while DNA sequence data can be sourced from NCBI, EBI and UNITE databases. Although the sequence data may be linked to a name, the quality of the metadata is variable and generally there is no corresponding link to images, descriptions or herbarium material. There is generally no way to establish the accuracy of the names in these genomic databases, other than whether the submission is from a reputable source. To tackle this problem, a new database (FacesofFungi), accessible at www.facesoffungi.org (FoF) has been established. This fungal database allows deposition of taxonomic data, phenotypic details and other useful data, which will enhance our current taxonomic understanding and ultimately enable mycologists to gain better and updated insights into the current fungal classification system. In addition, the database will also allow access to comprehensive metadata including descriptions of voucher and type specimens. This database is user-friendly, providing links and easy access between taxonomic ranks, with the classification system based primarily on molecular data (from the literature and via updated web-based phylogenetic trees), and to a lesser extent on morphological data when molecular data are unavailable. In FoF species are not only linked to the closest phylogenetic representatives, but also relevant data is provided, wherever available, on various applied aspects, such as ecological, industrial, quarantine and chemical uses. The data include the three main fungal groups (Ascomycota, Basidiomycota, Basal fungi) and fungus-like organisms. The FoF webpage is an output funded by the Mushroom Research Foundation which is an NGO with seven directors with mycological expertise. The webpage has 76 curators, and with the help of these specialists, FoF will provide an updated natural classification of the fungi, with illustrated accounts of species linked to molecular data. The present paper introduces the FoF database to the scientific community and briefly reviews some of the problems associated with classification and identification of the main fungal groups. The structure and use of the database is then explained. We would like to invite all mycologists to contribute to these web pages.
  •  
9.
  • Lichtenberg, Elinor M., et al. (författare)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • Ingår i: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Tidskriftsartikel (refereegranskat)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
10.
  • Cheung, William W. L., et al. (författare)
  • Building confidence in projections of the responses of living marine resources to climate change
  • 2016
  • Ingår i: ICES Journal of Marine Science. - : Oxford University Press (OUP). - 1054-3139 .- 1095-9289. ; 73:5, s. 1283-1296
  • Tidskriftsartikel (refereegranskat)abstract
    • The Fifth Assessment Report of the Intergovernmental Panel on Climate Change highlights that climate change and ocean acidification are challenging the sustainable management of living marine resources (LMRs). Formal and systematic treatment of uncertainty in existing LMR projections, however, is lacking. We synthesize knowledge of how to address different sources of uncertainty by drawing from climate model intercomparison efforts. We suggest an ensemble of available models and projections, informed by observations, as a starting point to quantify uncertainties. Such an ensemble must be paired with analysis of the dominant uncertainties over different spatial scales, time horizons, and metrics. We use two examples: (i) global and regional projections of Sea Surface Temperature and (ii) projection of changes in potential catch of sablefish (Anoplopoma fimbria) in the 21st century, to illustrate this ensemble model approach to explore different types of uncertainties. Further effort should prioritize understanding dominant, undersampled dimensions of uncertainty, as well as the strategic collection of observations to quantify, and ultimately reduce, uncertainties. Our proposed framework will improve our understanding of future changes in LMR and the resulting risk of impacts to ecosystems and the societies under changing ocean conditions.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 17
Typ av publikation
tidskriftsartikel (15)
forskningsöversikt (1)
bokkapitel (1)
Typ av innehåll
refereegranskat (16)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Jones, M. (2)
Nemitz, E. (2)
Wickland, Kimberly P ... (2)
Chen, C. (1)
Kim, H. (1)
Li, S. (1)
visa fler...
Li, Y. (1)
Wang, J. (1)
White, S. (1)
Zhang, J. (1)
Zhang, G (1)
Takeuchi, Y. (1)
Kim, J. (1)
Kim, J. H. (1)
Herbst, M. (1)
Schwartz, J. (1)
Zhang, W. (1)
Nilsson, R. Henrik, ... (1)
Ghobad-Nejhad, Masoo ... (1)
Ahn, H (1)
Abbott, Benjamin W. (1)
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
visa färre...
Lärosäte
Lunds universitet (7)
Göteborgs universitet (6)
Sveriges Lantbruksuniversitet (5)
Stockholms universitet (4)
Uppsala universitet (3)
Umeå universitet (2)
visa fler...
Högskolan i Halmstad (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (17)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (14)
Medicin och hälsovetenskap (3)
Samhällsvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy