SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Julia A) ;lar1:(nrm)"

Search: WFRF:(Julia A) > Swedish Museum of Natural History

  • Result 1-10 of 11
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Zamora, Juan Carlos, et al. (author)
  • Considerations and consequences of allowing DNA sequence data as types of fungal taxa
  • 2018
  • In: IMA Fungus. - : INT MYCOLOGICAL ASSOC. - 2210-6340 .- 2210-6359. ; 9:1, s. 167-185
  • Journal article (peer-reviewed)abstract
    • Nomenclatural type definitions are one of the most important concepts in biological nomenclature. Being physical objects that can be re-studied by other researchers, types permanently link taxonomy (an artificial agreement to classify biological diversity) with nomenclature (an artificial agreement to name biological diversity). Two proposals to amend the International Code of Nomenclature for algae, fungi, and plants (ICN), allowing DNA sequences alone (of any region and extent) to serve as types of taxon names for voucherless fungi (mainly putative taxa from environmental DNA sequences), have been submitted to be voted on at the 11th International Mycological Congress (Puerto Rico, July 2018). We consider various genetic processes affecting the distribution of alleles among taxa and find that alleles may not consistently and uniquely represent the species within which they are contained. Should the proposals be accepted, the meaning of nomenclatural types would change in a fundamental way from physical objects as sources of data to the data themselves. Such changes are conducive to irreproducible science, the potential typification on artefactual data, and massive creation of names with low information content, ultimately causing nomenclatural instability and unnecessary work for future researchers that would stall future explorations of fungal diversity. We conclude that the acceptance of DNA sequences alone as types of names of taxa, under the terms used in the current proposals, is unnecessary and would not solve the problem of naming putative taxa known only from DNA sequences in a scientifically defensible way. As an alternative, we highlight the use of formulas for naming putative taxa (candidate taxa) that do not require any modification of the ICN.
  •  
2.
  • Meadows, Jennifer, et al. (author)
  • Genome sequencing of 2000 canids by the Dog10K consortium advances the understanding of demography, genome function and architecture
  • 2023
  • In: Genome Biology. - : BioMed Central (BMC). - 1465-6906 .- 1474-760X. ; 24
  • Journal article (peer-reviewed)abstract
    • Background: The international Dog10K project aims to sequence and analyze several thousand canine genomes. Incorporating 20 x data from 1987 individuals, including 1611 dogs (321 breeds), 309 village dogs, 63 wolves, and four coyotes, we identify genomic variation across the canid family, setting the stage for detailed studies of domestication, behavior, morphology, disease susceptibility, and genome architecture and function.Results: We report the analysis of > 48 M single-nucleotide, indel, and structural variants spanning the autosomes, X chromosome, and mitochondria. We discover more than 75% of variation for 239 sampled breeds. Allele sharing analysis indicates that 94.9% of breeds form monophyletic clusters and 25 major clades. German Shepherd Dogs and related breeds show the highest allele sharing with independent breeds from multiple clades. On average, each breed dog differs from the UU_Cfam_GSD_1.0 reference at 26,960 deletions and 14,034 insertions greater than 50 bp, with wolves having 14% more variants. Discovered variants include retrogene insertions from 926 parent genes. To aid functional prioritization, single-nucleotide variants were annotated with SnpEff and Zoonomia phyloP constraint scores. Constrained positions were negatively correlated with allele frequency. Finally, the utility of the Dog10K data as an imputation reference panel is assessed, generating high-confidence calls across varied genotyping platform densities including for breeds not included in the Dog10K collection.Conclusions: We have developed a dense dataset of 1987 sequenced canids that reveals patterns of allele sharing, identifies likely functional variants, informs breed structure, and enables accurate imputation. Dog10K data are publicly available.
  •  
3.
  • Mikkelsen, Lonnie, et al. (author)
  • Comparing Distribution of Harbour Porpoises (Phocoena phocoena) Derived from Satellite Telemetry and Passive Acoustic Monitoring
  • 2016
  • In: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 11:7
  • Journal article (peer-reviewed)abstract
    • Cetacean monitoring is essential in determining the status of a population. Different monitoring methods should reflect the real trends in abundance and patterns in distribution, and results should therefore ideally be independent of the selected method. Here, we compare two independent methods of describing harbour porpoise (Phocoena phocoena) relative distribution pattern in the western Baltic Sea. Satellite locations from 13 tagged harbour porpoises were used to build a Maximum Entropy (MaxEnt) model of suitable habitats. The data set was subsampled to one location every second day, which were sufficient to make reliable models over the summer (Jun-Aug) and autumn (Sep-Nov) seasons. The modelled results were compared to harbour porpoise acoustic activity obtained from 36 static acoustic monitoring stations (C-PODs) covering the same area. The C-POD data was expressed as the percentage of porpoise positive days/hours (the number of days/hours per day with porpoise detections) by season. The MaxEnt model and C-POD data showed a significant linear relationship with a strong decline in porpoise occurrence from west to east. This study shows that two very different methods provide comparable information on relative distribution patterns of harbour porpoises even in a low density area.
  •  
4.
  • Kalthoff, Daniela, et al. (author)
  • Complementary approaches to tooth wear analysisin Tritylodontidae (Synapsida, Mammaliamorpha)reveal a generalist diet.
  • 2019
  • In: PLOS ONE. - New York : Public Library of Science (PLoS). - 1932-6203. ; 14:7, s. 1-24
  • Journal article (peer-reviewed)abstract
    • Stereoscopic microwear and 3D surface texture analyses on the cheek teeth of ten Upper Triassic to Lower Cretaceous tritylodontid (Mammaliamorpha) taxa of small/medium to large body size suggest that all were generalist feeders and none was a dietary specialist adapted to herbivory. There was no correspondence between body size and food choice. Stereomicroscopic microwear analysis revealed predominantly fine wear features with numerous small pits and less abundant fine scratches as principal components. Almost all analyzed facets bear some coarser microwear features, such as coarse scratches, large pits, puncture pits and gouges pointing to episodic feeding on harder food items or exogenous effects (contamination of food with soil grit and/or dust), or both. 3D surface texture analysis indicates predominantly fine features with large void volume, low peak densities, and various stages of roundness of the peaks. We interpret these features to indicate consumption of food items with low to moderate intrinsic abrasiveness and can exclude regular rooting, digging or caching behavior. Possible food items include plant vegetative parts, plant reproductive structures (seeds and seed-bearing organs), and invertebrates (i.e., insects). Although the tritylodontid tooth morphology and auto-occlusion suggest plants as the primary food resource, our results imply a wider dietary range including animal matter.
  •  
5.
  •  
6.
  • Nilsson, R. Henrik, 1976, et al. (author)
  • Improving ITS sequence data for identification of plant pathogenic fungi
  • 2014
  • In: Fungal Diversity. - : Springer Science and Business Media LLC. - 1560-2745 .- 1878-9129. ; 67:1, s. 11-19
  • Journal article (peer-reviewed)abstract
    • Plant pathogenic fungi are a large and diverse assemblage of eukaryotes with substantial impacts on natural ecosystems and human endeavours. These taxa often have complex and poorly understood life cycles, lack observable, discriminatory morphological characters, and may not be amenable to in vitro culturing. As a result, species identification is frequently difficult. Molecular (DNA sequence) data have emerged as crucial information for the taxonomic identification of plant pathogenic fungi, with the nuclear ribosomal internal transcribed spacer (ITS) region being the most popular marker. However, international nucleotide sequence databases are accumulating numerous sequences of compromised or low-resolution taxonomic annotations and substandard technical quality, making their use in the molecular identification of plant pathogenic fungi problematic. Here we report on a concerted effort to identify high-quality reference sequences for various plant pathogenic fungi and to re-annotate incorrectly or insufficiently annotated public ITS sequences from these fungal lineages. A third objective was to enrich the sequences with geographical and ecological metadata. The results – a total of 31,954 changes – are incorporated in and made available through the UNITE database for molecular identification of fungi (http://unite.ut.ee), including standalone FASTA files of sequence data for local BLAST searches, use in the next-generation sequencing analysis platforms QIIME and mothur, and related applications. The present initiative is just a beginning to cover the wide spectrum of plant pathogenic fungi, and we invite all researchers with pertinent expertise to join the annotation effort.
  •  
7.
  • Owen, Kylie, et al. (author)
  • A negative trend in abundance and an exceeded mortality limit call for conservation action for the Vulnerable Belt Sea harbour porpoise population
  • 2024
  • In: Frontiers in Marine Science. - 2296-7745. ; 11
  • Journal article (peer-reviewed)abstract
    • The management and conservation of biodiversity relies on information on both the abundance of species and the potential impact of threats. Globally, one of the largest threats towards marine biodiversity is bycatch in fisheries. Under the Marine Strategy Framework Directive (MSFD), EU Member States are required to assess the status of species, such as the harbour porpoise (Phocoena phocoena), in relation to their abundance and mortality due to bycatch every six years. The Vulnerable (HELCOM) Belt Sea population of harbour porpoise has been surveyed to determine its abundance six times using dedicated aerial or ship-based line-transect distance sampling surveys. Here, we estimated the first trend in population abundance over an 18 year period (2005-2022). Using the most recent abundance estimate, we computed a mortality limit applying the modified Potential Biological Removal (mPBR) method based on the regionally agreed conservation objective to restore or maintain 80% of carrying capacity over 100 years with an 80% probability. Over the past 18 years there has been a strong negative trend (-2.7% p.a.; 95% CI: -4.1%; + 1.3%) in abundance, with a 90.5% probability. The mortality limit was estimated to be 24 animals, which the current bycatch estimates (similar to 900 porpoises/year from the commercial Danish and Swedish set net fishery fleets, with no data from Germany and other fishery types) exceed by far. The frequency and quality of data available on abundance for this population are higher than those available for the majority of marine species. Given the observed population decline and likely unsustainable levels of bycatch, the results presented here provide a strong basis to make informed, evidence-based management decisions for action for this population. Such action is needed urgently, before the dire situation of other porpoise species and populations around the globe is repeated.
  •  
8.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-10 of 11
Type of publication
journal article (9)
reports (1)
book chapter (1)
Type of content
peer-reviewed (10)
other academic/artistic (1)
Author/Editor
Larsson, Ellen, 1961 (2)
Kõljalg, Urmas (2)
Pawlowska, Julia (2)
Abarenkov, Kessy (1)
Antonelli, Alexandre ... (1)
Bahram, Mohammad (1)
show more...
Bengtsson-Palme, Joh ... (1)
Martinsson, Svante, ... (1)
Svantesson, Sten (1)
Unterseher, Martin (1)
Nilsson, R. Henrik, ... (1)
Saar, Irja (1)
Larsson, Karl-Henrik ... (1)
Ghobad-Nejhad, Masoo ... (1)
Sánchez-García, Mari ... (1)
Ryberg, Martin (1)
Lindahl, Björn (1)
Niskanen, Tuula (1)
Suija, Ave (1)
Tedersoo, Leho (1)
Liimatainen, Kare (1)
Peintner, Ursula (1)
Lindblad-Toh, Kersti ... (1)
Hyde, Kevin D. (1)
Mešić, Armin (1)
Miettinen, Otto (1)
Rebriev, Yury A. (1)
Borovicka, Jan (1)
Svensson, Måns (1)
Nagy, István (1)
Tibell, Leif (1)
Thor, Göran (1)
Ahti, Teuvo (1)
Mayrhofer, Helmut (1)
Kärnefelt, Ingvar (1)
Thell, Arne (1)
Moberg, Roland (1)
Chen, Jie (1)
De Kesel, André (1)
Berlin, Anna (1)
Ryman, Svengunnar (1)
Larson, Greger (1)
Racimo, Fernando (1)
Sköld, Martin (1)
Læssøe, Thomas (1)
Kukwa, Martin (1)
Grube, Martin (1)
Aptroot, Andre (1)
Siebert, Ursula (1)
Dietz, Rune (1)
show less...
University
Uppsala University (3)
University of Gothenburg (2)
Stockholm University (2)
Swedish University of Agricultural Sciences (2)
Royal Institute of Technology (1)
show more...
Lund University (1)
Chalmers University of Technology (1)
show less...
Language
English (11)
Research subject (UKÄ/SCB)
Natural sciences (11)
Agricultural Sciences (2)
Medical and Health Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view