SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kågedal Katarina) "

Sökning: WFRF:(Kågedal Katarina)

  • Resultat 1-10 av 57
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  • Klionsky, Daniel J., et al. (författare)
  • Guidelines for the use and interpretation of assays for monitoring autophagy
  • 2012
  • Ingår i: Autophagy. - : Informa UK Limited. - 1554-8635 .- 1554-8627. ; 8:4, s. 445-544
  • Forskningsöversikt (refereegranskat)abstract
    • In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process vs. those that measure flux through the autophagy pathway (i.e., the complete process); thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from stimuli that result in increased autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field.
  •  
3.
  • Agholme, Lotta, et al. (författare)
  • Amyloid-β Secretion, Generation, and Lysosomal Sequestration in Response to Proteasome Inhibition : Involvement of Autophagy
  • 2012
  • Ingår i: Journal of Alzheimer's Disease. - : I O S Press. - 1387-2877 .- 1875-8908. ; 31:2, s. 343-358
  • Tidskriftsartikel (refereegranskat)abstract
    • The proteasome is important for degradation of worn out and misfolded proteins. Decreased proteasome activity has been implicated in Alzheimer's disease (AD). Proteasome inhibition induces autophagy, but it is still unknown whether autophagy is beneficial or deleterious to AD neurons, as the autophagosome has been suggested as a site of amyloid-β (Aβ) generation. In this study, we investigated the effect of proteasome inhibition on Aβ accumulation and secretion, as well as the processing of amyloid-β protein precursor (AβPP) in AβPPSwe transfected SH-SY5Y neuroblastoma cells. We show that proteasome inhibition resulted in autophagy-dependent accumulation of Aβ in lysosomes, and increased levels of intracellular and secreted Aβ. The enhanced levels of Aβ could not be explained by increased amounts of AβPP. Instead, reduced degradation of the C-terminal fragment of AβPP (C99) by the proteasome makes C99 available for γ-secretase cleavage, leading to Aβ generation. Inhibition of autophagy after proteasome inhibition led to reduced levels of intracellular, but not secreted Aβ, and tended to further increase the C99 to AβPP ratio, supporting involvement of the autophagosome in Aβ generation. Furthermore, proteasome inhibition caused a reduction in cellular viability, which was reverted by inhibition of autophagy. Dysfunction of the proteasome could cause lysosomal accumulation of Aβ, as well as increased generation and secretion of Aβ, which is partly facilitated by autophagy. As a decrease in cellular viability was also detected, it is possible that upregulation of autophagy is an unsuccessful rescue mechanism, which instead of being protective, contributes to AD pathogenesis.
  •  
4.
  • Agholme, Lotta, et al. (författare)
  • An In Vitro Model for Neuroscience: Differentiation of SH-SY5Y Cells into Cells with Morphological and Biochemical Characteristics of Mature Neurons
  • 2010
  • Ingår i: Journal of Alzheimer's Disease. - : Ios Press. - 1387-2877 .- 1875-8908. ; 20:4, s. 1069-1082
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuroscience, including research on Alzheimers disease, is hampered by the lack of suitable in vitro models to study the human nervous system. To counteract this, many attempts to differentiate cell lines into more neuron-like cells have been performed, resulting in partial expression of neuronal features. Furthermore, it has been reported that neuroblastoma cell lines lack mature isoforms of tau. Our aim was to develop an improved in vitro model, generating sustainable cells with morphology and biochemistry of human, mature neurons. To obtain cells with neuronal differentiation and function, we investigated the effect of combining three-dimensional culturing of SH-SY5Y cells in extracellular matrix (ECM) gel with several factors reported to have neuro-differentiating effects. This resulted in cells with apparent neuronal morphology with long, extensively branched neurites. Further investigation revealed expression of several neurospecific markers including synapse protein Sv2 and nuclear marker NeuN, as well as the presence of synapses and axonal vesicle transport. In addition, these cells expressed mature tau isoforms, and tau protein expression was significantly increased compared to undifferentiated cells, reaching levels found in adult human brain. In conclusion, we found that pre-treatment with retinoic acid followed by ECM gel culturing in combination with brain derived neurotrophic factor, neuregulin beta(1), nerve growth factor, and vitamin D-3 treatment generated sustainable cells with unambiguous resemblance to adult neurons. These cells also expresses adult splicing forms of tau with neuronal localization, making this cellular in vitro model useful in many areas of neuroscience research, particularly the Alzheimers disease field.
  •  
5.
  • Agholme, Lotta, et al. (författare)
  • Proteasome Inhibition Induces Stress Kinase Dependent Transport Deficits – Implications for Alzheimer’s Disease
  • 2014
  • Ingår i: Molecular and Cellular Neuroscience. - : Elsevier. - 1044-7431 .- 1095-9327. ; 58, s. 29-39
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer’s disease (AD) is characterized by accumulation of two misfolded and aggregated proteins, β-amyloid and hyperphosphorylated tau. Both cellular systems responsible for clearance of misfolded and aggregated proteins, the lysosomal and the proteasomal, have been shown to be malfunctioning in the aged brain and more so in AD patients. This malfunction could be the cause of β-amyloid and tau accumulation, eventually aggregating in plaques and tangles. We have investigated how decreased proteasome activity affects AD related pathophysiological changes of microtubule transport and stability, as well as tau phosphorylation. To do this, we used our recently developed neuronal model where human SH-SY5Y cells obtain neuronal morphology and function through differentiation. We found that exposure to low doses of the proteasome inhibitor MG-115 caused disturbed neuritic transport, together with microtubule destabilization and tau phosphorylation. Furthermore, reduced proteasome activity activated several kinases implicated in AD pathology, including JNK, c-Jun and ERK 1/2. Restoration of the microtubule transport was achieved by inhibiting ERK 1/2 activation, and simultaneous inhibition of both ERK 1/2 and c-Jun reversed the proteasome inhibition-induced tau phosphorylation. Taken together, this study suggests that a decrease in proteasome activity can, through activation of c-Jun and ERK 1/2, result in several events contributing to AD pathology. Restoring proteasome function or inhibiting ERK 1/2 and c-Jun could therefore be used as novel treatments against AD.
  •  
6.
  • Agholme, Lotta (författare)
  • The involvement of degradation pathways and neuron-to-neuron transmission in Alzheimer’s disease
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Although the vast majority of Alzheimer’s disease (AD) cases are of the sporadic type, mutations causing the familial form have been the focus of AD research for decades. The disease is pathologically characterised by β-amyloid (Aβ) and tau protein aggregates in neuritic plaques and neurofibrillary tangles. Furthermore, it is known that AD pathology spreads throughout the brain, most often along the same anatomical pattern. However, so far no cause for the sporadic form of the disease has been found. Accumulation of protein aggregates as well as decreased activity of the protein degradation systems, lysosomes and proteasomes, is found in diseased brains. This indicates that defective degradation contributes to sporadic AD.The aim of this thesis was to develop an improved neuronal model, and study the effects of decreased proteasome function on tau phosphorylation and axonal transport. In addition, the effects on Aβ accumulation and generation upon proteasome inhibition were investigated. Finally, the possibility that intracellularly accumulated Aβ oligomers could be transferred from one neuron to another was tested.Differentiation of human SH-SY5Y neuroblastoma cells in an extracellular matrix gel, using a set of neurotrophic factors, resulted in cells with neuronal phenotype, expressing neuron specific markers and all six adult isoforms of tau. Within this neuronal model, we found that reduced proteasome activity inhibited neuritic transport, and caused tau phosphorylation in a c-Jun and ERK 1/2 dependent manner. Using proteasome inhibition in APP overexpressing cells, we found an autophagy dependent intralysosomal Aβ accumulation, together with elevation of intra- and extracellular concentrations of Aβ. Autophagy inhibition protected the cells from the toxicity induced by decreased proteasome activity. Finally, we could, as the first group, show that Aβ can be directly transferred from one neuron to another through connected neurites. Furthermore, accumulation of Aβ in the endo-lysosomal compartment of receiving cells caused toxicity and neurodegeneration.We believe that cells not able to degrade accumulated Aβ, due to increased generation or reduced degradative capacity, instead tries to clear its content through transfer to connected neurons. If not properly degraded in the receiving cell, this can accelerate AD pathology and cause neuritic and neuronal degeneration spreading throughout the brain. Increasing the activity of the degradative systems, or inhibiting transmission of Aβ between neurons could therefore be novel treatments for AD.
  •  
7.
  • Appelqvist, Hanna, et al. (författare)
  • Attenuation of the Lysosomal Death Pathway by Lysosomal Cholesterol Accumulation
  • 2011
  • Ingår i: American Journal of Pathology. - : American Society for Investigative Pathology (ASIP). - 0002-9440 .- 1525-2191. ; 178:2, s. 629-639
  • Tidskriftsartikel (refereegranskat)abstract
    • In the past decade, lysosomal membrane permeabilization (LMP) has emerged as a significant component of cell death signaling. The mechanisms by which lysosomal stability is regulated are not yet fully understood, but changes in the lysosomal membrane lipid composition have been suggested to be involved. Our aim was to investigate the importance of cholesterol in the regulation of lysosomal membrane permeability and its potential impact on apoptosis. Treatment of normal human fibroblasts with U18666A, an amphiphilic drug that inhibits cholesterol transport and causes accumulation of cholesterol in lysosomes, rescued cells from lysosome-dependent cell death induced by the lysosomotropic detergent 0-methyl-serine dodecylamide hydrochloride (MSDH), staurosporine (STS), or cisplatin. LMP was decreased by pretreating cells with U18666A, and there was a linear relationship between the cholesterol content of lysosomes and their resistance to permeabilization induced by MSDH. U18666A did not induce changes in expression or localization of 70-kDa heat shock proteins (Hsp70) or antiapoptotic Bcl-2 proteins known to protect the lysosomal membrane. Induction of autophagy also was excluded as a contributor to the protective mechanism. By using Chinese hamster ovary (CHO) cells with lysosomal cholesterol overload due to a mutation in the cholesterol transporting protein Niemann-Pick type C1 (NPC1), the relationship between lysosomal cholesterol accumulation and protection from lysosome-dependent cell death was confirmed. Cholesterol accumulation in lysosomes attenuates apoptosis by increasing lysosomal membrane stability.
  •  
8.
  • Appelqvist, Hanna, 1981- (författare)
  • Lysosomal Membrane Stability and Cathepsins in Cell Death
  • 2012
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Lysosomes are acidic organelles that are critically involved in a number of physiological processes, including macromolecule degradation, endocytosis, autophagy, exocytosis and cholesterol homeostasis. Several pathological conditions, such as cancer, neurodegenerative disorders and lysosomal storage diseases, involve lysosomal disturbances, indicating the importance of the organelle for correct cellular function. The aim of this thesis was to investigate the role of lysosomes in cell death signaling.Previous studies have shown that permeabilization of the lysosomal membrane and release of hydrolytic enzymes such as cathepsin D to the cytosol occurs during apoptosis. We identified Bid and 14-3-3 proteins as cytosolic targets of cathepsin D in human fibroblasts. Truncated Bid, generated by cathepsin D proteolytic cleavage, stimulates Bax-mediated release of pro-apoptotic factors from the mitochondria, thereby engaging the intrinsic pathway to apoptosis.Since the presence of cathepsins in the cytosol is sufficient to induce apoptosis, the permeability of the lysosomal membrane influences the fate of the cell. In this thesis, we demonstrated that the stability of the lysosomal membrane can be manipulated by altering the lysosomal cholesterol content. Cells with high lysosomal cholesterol content were less prone to undergo apoptosis when challenged with stimuli known to induce lysosome-mediated cell death. In addition, cholesterol accumulation was associated with increased expression of lysosome-associated membrane proteins and storage of other lipids; however, these factors did not contribute to lysosomal stabilization.Lysosomal membrane permeabilization and cathepsins contribute to ultraviolet (UV) irradiation-induced apoptosis. We demonstrate plasma membrane damage induced by UVA irradiation to be rapidly repaired by lysosomal exocytosis in human keratinocytes. Despite efficient plasma membrane resealing, the cells underwent apoptosis, which was dependent on early activation of caspase-8. The activation of caspase-8 was lysosome-dependent and occurred in vesicles positive for lysosomal markers.This thesis demonstrates the importance of lysosomal stability for apoptosis regulation and that this stability can be influenced by drug intervention. Modulation of the lysosomal membrane permeability may have potential for use as a therapeutic strategy in conditions associated with accelerated or repressed apoptosis.
  •  
9.
  • Appelqvist, Hanna, et al. (författare)
  • Lysosome-Mediated Apoptosis is Associated with Cathepsin D-Specific Processing of Bid at Phe24,Trp48, and Phe183
  • 2012
  • Ingår i: Annals of Clinical and Laboratory Science. - : Institute for Clinical Science. - 0091-7370 .- 1550-8080. ; 42:3, s. 231-242
  • Tidskriftsartikel (refereegranskat)abstract
    • Bax-mediated permeabilization of the outer mitochondrial membrane and release of apoptogenic factors into the cytosol are key events that occur during apoptosis. Likewise, apoptosis is associated with permeabilization of the lysosomal membrane and release of lysosomal cathepsins into the cytosol. This report identifies proteolytically active cathepsin D as an important component of apoptotic signaling following lysosomal membrane permeabilization in fibroblasts. Lysosome-mediated cell death is associated with degradation of Bax sequestering 14-3-3 proteins, cleavage of the Box activator Bid, and translocation of Box to mitochondria, all of which were cathepsin D-dependent. Processing of Bid could be reproduced by enforced lysosomal membrane permeabilization, using the lysosomotropic detergent O-methyl-serine dodecylamine hydrochloride (MSDH). We identified three cathepsin D-specific cleavage sites in Bid, Phe24, Trp48, and Phe183. Cathepsin D-cleaved Bid induced Bax-mediated release of cytochrome c from purified mitochondria, indicating that the fragments generated are functionally active. Moreover, apoptosis was associated with cytosolic acidification, thereby providing a more favorable environment for the cathepsin D-mediated cleavage of Bid. Our study suggests that cytosolic cathepsin D triggers Bax-mediated cytochrome c release by proteolytic activation of Bid.
  •  
10.
  • Appelqvist, Hanna, et al. (författare)
  • Sensitivity to Lysosome-Dependent Cell Death is Directly Regulated by Lysosomal Cholesterol Content
  • 2012
  • Ingår i: PLOS ONE. - : Public Library of Science. - 1932-6203. ; 7:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1) protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2), which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determined the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 57
Typ av publikation
tidskriftsartikel (40)
doktorsavhandling (7)
annan publikation (5)
konferensbidrag (2)
forskningsöversikt (2)
bokkapitel (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (43)
övrigt vetenskapligt/konstnärligt (14)
Författare/redaktör
Kågedal, Katarina (40)
Öllinger, Karin (13)
Agholme, Lotta (8)
Appelqvist, Hanna (8)
Sandin, Linnea (8)
Garner, Brett (7)
visa fler...
Johansson, Uno (6)
Janefjord, Camilla (5)
Marcusson, Jan (5)
Nath, Sangeeta (5)
Hammarström, Per (5)
Johansson, Ann-Charl ... (5)
Hallbeck, Martin (4)
Blennow, Kaj (4)
Zetterberg, Henrik (4)
Brunk, Ulf, 1937- (4)
Hooker, Andrew C. (3)
Svensson, Samuel (3)
Benedikz, Eirikur (3)
Roberg, Karin (3)
Lindgren, Mikael (3)
Halliday, Glenda (3)
Nilsson, Cathrine (3)
Kågedal, Katarina, D ... (3)
Saftig, Paul (3)
Wang, Mei (2)
Kominami, Eiki (2)
Karlsson, Mats O. (2)
Bonaldo, Paolo (2)
Minucci, Saverio (2)
De Milito, Angelo (2)
Liu, Wei (2)
Clarke, Robert (2)
Kumar, Ashok (2)
Brest, Patrick (2)
Simon, Hans-Uwe (2)
Mograbi, Baharia (2)
Melino, Gerry (2)
Albert, Matthew L (2)
Lopez-Otin, Carlos (2)
Liu, Bo (2)
Ghavami, Saeid (2)
Harris, James (2)
Zhang, Hong (2)
Zorzano, Antonio (2)
Bozhkov, Peter (2)
Petersen, Morten (2)
Wäster, Petra (2)
Antonsson, Bruno (2)
Armstrong, Andrea (2)
visa färre...
Lärosäte
Linköpings universitet (54)
Karolinska Institutet (8)
Uppsala universitet (3)
Göteborgs universitet (2)
Lunds universitet (2)
Sveriges Lantbruksuniversitet (2)
visa fler...
Umeå universitet (1)
Stockholms universitet (1)
visa färre...
Språk
Engelska (57)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (20)
Naturvetenskap (13)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy