SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Künstner Axel) "

Sökning: WFRF:(Künstner Axel)

  • Resultat 1-10 av 13
  • [1]2Nästa
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Näsvall, Karin, et al. (författare)
  • Host plant diet affects growth and induces altered gene expression and microbiome composition in the wood white (Leptidea sinapis) butterfly
  • 2021
  • Ingår i: Molecular Ecology. - : Wiley. - 0962-1083 .- 1365-294X. ; 30:2, s. 499-516
  • Tidskriftsartikel (refereegranskat)abstract
    • In a time with decreasing biodiversity, especially among insects, a detailed understanding about specific resource utilization strategies is crucial. The physiological and behavioural responses to host switches in phytophagous insects are poorly understood. Earlier studies indicate that a host plant switch might be associated with distinctive molecular and physiological responses in different lineages. Expanding the assessment of such associations across Lepidoptera will reveal if there are general patterns in adaptive responses, or if each switch event is more of a unique character. We investigated host plant preference, fitness consequences, effects on expression profiles and gut microbiome composition in two common wood white (Leptidea sinapis) populations with different host plant preferences from the extremes of the species distribution area (Sweden and Catalonia). Our results show that female Catalonian wood whites lack preference for either host plant (Lotus corniculatus or L. dorycnium), while Swedish females laid significantly more eggs on L. corniculatus. Individuals from both populations reared on L. dorycnium had longer developmental times and smaller body size as adults. This indicates that both environmental and genetic factors determine the choice to use a specific host plant. Gene expression analysis revealed a more pronounced response to host plant in the Catalonian compared to the Swedish population. In addition, host plant treatment resulted in a significant shift in microbiome community structure in the Catalonian population. Together, this suggests that population specific plasticity associated with local conditions underlies host plant utilisation in wood whites.
  •  
2.
  • Ellegren, Hans, et al. (författare)
  • The genomic landscape of species divergence in Ficedula flycatchers
  • 2012
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 491:7426, s. 756-760
  • Tidskriftsartikel (refereegranskat)abstract
    • Unravelling the genomic landscape of divergence between lineages is key to understanding speciation. The naturally hybridizing collared flycatcher and pied flycatcher are important avian speciation models that show pre-as well as postzygotic isolation. We sequenced and assembled the 1.1-Gb flycatcher genome, physically mapped the assembly to chromosomes using a low-density linkage map and re-sequenced population samples of each species. Here we show that the genomic landscape of species differentiation is highly heterogeneous with approximately 50 'divergence islands' showing up to 50-fold higher sequence divergence than the genomic background. These non-randomly distributed islands, with between one and three regions of elevated divergence per chromosome irrespective of chromosome size, are characterized by reduced levels of nucleotide diversity, skewed allele-frequency spectra, elevated levels of linkage disequilibrium and reduced proportions of shared polymorphisms in both species, indicative of parallel episodes of selection. Proximity of divergence peaks to genomic regions resistant to sequence assembly, potentially including centromeres and telomeres, indicate that complex repeat structures may drive species divergence. A much higher background level of species divergence of the Z chromosome, and a lower proportion of shared polymorphisms, indicate that sex chromosomes and autosomes are at different stages of speciation. This study provides a roadmap to the emerging field of speciation genomics.
  •  
3.
  • Künstner, Axel (författare)
  • Birds as a Model for Comparative Genomic Studies
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt)abstract
    • Comparative genomics provides a tool to investigate large biological datasets, i.e. genomic datasets. In my thesis I focused on inferring patterns of selection in coding and non-coding regions of avian genomes. Until recently, large comparative studies on selection were mainly restricted to model species with sequenced genomes. This limitation has been overcome with advances in sequencing technologies and it is now possible to gather large genomic data sets for non-model species.  Next-generation sequencing data was used to study patterns of nucleotide substitutions and from this we inferred how selection has acted in the genomes of 10 non-model bird species. In general, we found evidence for a negative correlation between neutral substitution rate and chromosome size in birds. In a follow up study, we investigated two closely related bird species, to study expression levels in different tissues and pattern of selection. We found that between 2% and 18% of all genes were differentially expressed between the two species. We showed that non-coding regions adjacent to genes are under evolutionary constraint in birds, which suggests that noncoding DNA plays an important functional role in the genome. Regions downstream to genes (3’) showed particularly high level of constraint. The level of constraint in these regions was not correlated to the length of untranslated regions, which suggests that other causes play also a role in sequence conservation. We compared the rate of nonsynonymous substitutions to the rate of synonymous substitutions in order to infer levels of selection in protein-coding sequences. Synonymous substitutions are often assumed to evolve neutrally. We studied synonymous substitutions by estimating constraint on 4-fold degenerate sites of avian genes and found significant evolutionary constraint on this category of sites (between 24% and 43%). These results call for a reappraisal of synonymous substitution rates being used as neutral standards in molecular evolutionary analysis (e.g. the dN/dS ratio to infer positive selection). Finally, the problem of sequencing errors in next-generation sequencing data was investigated. We developed a program that removes erroneous bases from the reads. We showed that low coverage sequencing projects and large genome sequencing projects will especially gain from trimming erroneous reads.
  •  
4.
  • Künstner, Axel, et al. (författare)
  • Comparative genomics based on massive parallel transcriptome sequencing reveals patterns of substitution and selection across 10 bird species
  • 2010
  • Ingår i: Molecular Ecology. - 0962-1083 .- 1365-294X. ; 19:Suppl.1, s. 266-276
  • Tidskriftsartikel (refereegranskat)abstract
    • Next-generation sequencing technology provides an attractive means to obtain largescale sequence data necessary for comparative genomic analysis. To analyse the patterns of mutation rate variation and selection intensity across the avian genome, we performed brain transcriptome sequencing using Roche 454 technology of 10 different non-model avian species. Contigs from de novo assemblies were aligned to the two available avian reference genomes, chicken and zebra finch. In total, we identified 6499 different genes across all 10 species, with ∼1000 genes found in each full run per species. We found evidence for a higher mutation rate of the Z chromosome than of autosomes (male-biased mutation) and a negative correlation between the neutral substitution rate (dS) and chromosome size. Analyses of the mean dN/dS ratio (ω) of genes across chromosomes supported the Hill-Robertson effect (the effect of selection at linked loci) and point at stochastic problems with x as an independent measure of selection. Overall, this study demonstrates the usefulness of next-generation sequencing for obtaining genomic resources for comparative genomic analysis of non-model organisms.
  •  
5.
  • Künstner, Axel, et al. (författare)
  • Evolutionary Constraint in Flanking Regions of Avian Genes
  • 2011
  • Ingår i: Molecular biology and evolution. - 0737-4038 .- 1537-1719. ; 28:9, s. 2481-2489
  • Tidskriftsartikel (refereegranskat)abstract
    • An important comprehension from comparative genomic analysis is that sequence conservation beyond neutral expectations is frequently found outside protein-coding regions, indicating important functional roles of noncoding DNA. Understanding the causes of constraint on noncoding sequence evolution forms an important area of research, not least in light of the importance for understanding the evolution of gene expression. We aligned all orthologous genes of chicken and zebra finch together with 5 kb of their upstream and downstream noncoding sequences, to study the evolution of gene flanking sequences in the avian genome. Using ancestral repeats as a neutral reference, we detected significant evolutionary constraint in the 3' flanking region, highest directly after termination (60%) and then gradually decreasing to about 20% 5 kb downstream. Constraint was higher in annotated 3' untranslated regions (UTRs) than in non-UTRs at the same distance from the stop codon and higher in sequences annotated as microRNA (miRNA)-binding sites than in non-miRNA-binding sites within 3' UTRs. Constraint was also higher when estimated for a smaller data set of genes from more closely related songbird species, indicating turnover of functional elements during avian evolution. On the 5' flanking side constraint was readily seen within the first 125 bp immediately upstream of the start codon (34%) and was about 10% for remaining sequence within 5 kb upstream. Analysis of chicken polymorphism data gave further support for the highest constraint directly before and after the translated region. Finally, we found that genes evolving under the highest constraint measured by d(N)/d(S) also had the highest level of constraint in the 3' flanking region. This study broadens the insights into gene flanking sequence evolution by adding new findings from a vertebrate lineage other than mammals.
  •  
6.
  • Künstner, Axel, et al. (författare)
  • Gene content and patterns of gene expression in the flycatcher genome
  • Annan publikation (övrigt vetenskapligt)abstract
    • Phenotypic evolution may be driven by changes in the sequence of protein-coding genes or by the way (when, where, at what level) proteins are expressed. Generally, our knowledge about the evolution of gene expression is relatively limited, and this is particularly so for wild populations. Collared flycatcher (Ficedula albicollis) and pied flycatcher (F. hypoleuca) are two recently diverged passerine birds, which have been subject to extensive ecological research, including aspects of speciation. We obtained RNA-seq data with Illumina technology from 10 adult individuals per species (five females and five males) using brain, kidney, liver, lung, muscle, skin, ovary, and testis tissue (plus eight embryos of each species). A total of more than 1 billion sequencing reads were assembled into >15.000 gene models for each species. The proportion of differentially expressed genes between species ranged from 8% to 18% per adult tissue. Very few GO categories were found to be overrepresented among differentially expressed genes, which at least in part might reflect that orphan and not yet annotated genes are prone to evolve more rapidly in gene expression level. However, in testis, the category olfactory receptor activity was significantly overrepresented among differentially expressed genes and it is of interest to note that this category of genes is involved in sperm-egg communication and thereby potentially may contribute to reproductive incompatibility between the two species. Genes with a high degree of differentiation in gene expression between species tended to have high rates of sequence evolution (high dN/dS). Overall, this study illustrates both the feasibility and usefulness of deep transcriptome sequencing in non-model organisms.
  •  
7.
  • Künstner, Axel, et al. (författare)
  • Significant Selective Constraint at 4-Fold Degenerate Sites in the Avian Genome and Its Consequence for Detection of Positive Selection
  • 2011
  • Ingår i: Genome Biology and Evolution. - 1759-6653 .- 1759-6653. ; 3, s. 1381-1389
  • Tidskriftsartikel (refereegranskat)abstract
    • A major conclusion from comparative genomics is that many sequences that do not code for proteins are conserved beyond neutral expectations, indicating that they evolve under the influence of purifying selection and are likely to have functional roles. Due to the degeneracy of the genetic code, synonymous sites within protein-coding genes have previously been seen as "silent" with respect to function and thereby invisible to selection. However, there are indications that synonymous sites of vertebrate genomes are also subject to selection and this is not necessarily because of potential codon bias. We used divergence in ancestral repeats as a neutral reference to estimate the constraint on 4-fold degenerate sites of avian genes in a whole-genome approach. In the pairwise comparison of chicken and zebra finch, constraint was estimated at 24-32%. Based on three-species alignments of chicken, turkey, and zebra finch, lineage-specific estimates of constraint were 43%, 29%, and 24%, respectively. The finding of significant constraint at 4-fold degenerate sites from data on interspecific divergence was replicated in an analysis of intraspecific diversity in the chicken genome. These observations corroborate recent data from mammalian genomes and call for a reappraisal of the use of synonymous substitution rates as neutral standards in molecular evolutionary analysis, for example, in the use of the well-known d(N)/d(S) ratio and in inferences on positive selection. We show by simulations that the rate of false positives in the detection of positively selected genes and sites increases several-fold at the levels of constraint at 4-fold degenerate sites found in this study.
  •  
8.
  • Nabholz, Benoit, et al. (författare)
  • Dynamic Evolution of Base Composition : Causes and Consequences in Avian Phylogenomics
  • 2011
  • Ingår i: Molecular biology and evolution. - 0737-4038 .- 1537-1719. ; 28:8, s. 2197-2210
  • Tidskriftsartikel (refereegranskat)abstract
    • Resolving the phylogenetic relationships among birds is a classical problem in systematics, and this is particularly so when it comes to understanding the relationships among Neoaves. Previous phylogenetic inference of birds has been limited to mitochondrial genomes or a few nuclear genes. Here, we apply deep brain transcriptome sequencing of nine bird species (several passerines, hummingbirds, dove, parrot, and emu), using next-generation sequencing technology to understand features of transcriptome evolution in birds and how this affects phylogenetic inference, and combine with data from two bird species using first generation technology. The phylogenomic data matrix comprises 1,995 genes and a total of 0.77 Mb of exonic sequence. First, we find an unexpected heterogeneity in the evolution of base composition among avian lineages. There is a pronounced increase in guanine + cytosine (GC) content in the third codon position in several independent lineages, with the strongest effect seen in passerines. Second, we evaluate the effect of GC content variation on phylogenetic reconstruction. We find important inconsistencies between the topologies obtained with or without taking GC variation into account, each supporting different conclusions of past studies and also influencing hypotheses on the evolution of the trait of vocal learning. Third, we demonstrate a link between GC content evolution and recombination rate and, focusing on the zebra finch lineage, find that recombination seems to drive GC content. Although we cannot reveal the causal relationships, this observation is consistent with the model of GC-biased gene conversion. Finally, we use this unparalleled amount of avian sequence data to study the rate of molecular evolution, calibrated by fossil evidence and augmented with data from alligator transcriptome sequencing. There is a 2- to 3-fold variation in substitution rate among lineages with passerines being the most rapidly evolving and ratites the slowest. This study illustrates the potential of next-generation sequencing for phylogenomic studies but also the pitfalls when using genome-wide data with heterogeneous base composition.
  •  
9.
  • Nam, Kiwoong, et al. (författare)
  • Molecular evolution of genes in avian genomes
  • 2010
  • Ingår i: Genome Biology. - 1474-760X. ; 11:6, s. R68-
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Obtaining a draft genome sequence of the zebra finch (Taeniopygia guttata), the second bird genome to be sequenced, provides the necessary resource for whole-genome comparative analysis of gene sequence evolution in a non-mammalian vertebrate lineage. To analyze basic molecular evolutionary processes during avian evolution, and to contrast these with the situation in mammals, we aligned the protein-coding sequences of 8,384 1: 1 orthologs of chicken, zebra finch, a lizard and three mammalian species. Results: We found clear differences in the substitution rate at fourfold degenerate sites, being lowest in the ancestral bird lineage, intermediate in the chicken lineage and highest in the zebra finch lineage, possibly reflecting differences in generation time. We identified positively selected and/or rapidly evolving genes in avian lineages and found an over-representation of several functional classes, including anion transporter activity, calcium ion binding, cell adhesion and microtubule cytoskeleton. Conclusions: Focusing specifically on genes of neurological interest and genes differentially expressed in the unique vocal control nuclei of the songbird brain, we find a number of positively selected genes, including synaptic receptors. We found no evidence that selection for beneficial alleles is more efficient in regions of high recombination; in fact, there was a weak yet significant negative correlation between omega and recombination rate, which is in the direction predicted by the Hill-Robertson effect if slightly deleterious mutations contribute to protein evolution. These findings set the stage for studies of functional genetics of avian genes.
  •  
10.
  • Smeds, Linnea, et al. (författare)
  • ConDeTri : A content dependent read trimmer for Illumina data
  • 2011
  • Ingår i: PLoS ONE. - 1932-6203 .- 1932-6203. ; 6:10, s. e26314-
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last few years, DNA and RNA sequencing have started to play an increasingly important role in biological and medical applications, especially due to the greater amount of sequencing data yielded from the new sequencing machines and the enormous decrease in sequencing costs. Particularly, Illumina/Solexa sequencing has had an increasing impact on gathering data from model and non-model organisms. However, accurate and easy to use tools for quality filtering have not yet been established. We present ConDeTri, a method for content dependent read trimming for next generation sequencing data using quality scores of each individual base. The main focus of the method is to remove sequencing errors from reads so that sequencing reads can be standardized. Another aspect of the method is to incorporate read trimming in next-generation sequencing data processing and analysis pipelines. It can process single-end and paired-end sequence data of arbitrary length and it is independent from sequencing coverage and user interaction. ConDeTri is able to trim and remove reads with low quality scores to save computational time and memory usage during de novo assemblies.  Low coverage or large genome sequencing projects will especially gain from trimming reads.  The method can easily be incorporated into preprocessing and analysis pipelines for Illumina data. Availability and implementation: Freely available on the web athttp://code.google.com/p/condetri
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13
  • [1]2Nästa
 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy