SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Künstner Axel) ;pers:(Smeds Linnea)"

Sökning: WFRF:(Künstner Axel) > Smeds Linnea

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Ellegren, Hans, et al. (författare)
  • The genomic landscape of species divergence in Ficedula flycatchers
  • 2012
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 491:7426, s. 756-760
  • Tidskriftsartikel (refereegranskat)abstract
    • Unravelling the genomic landscape of divergence between lineages is key to understanding speciation. The naturally hybridizing collared flycatcher and pied flycatcher are important avian speciation models that show pre-as well as postzygotic isolation. We sequenced and assembled the 1.1-Gb flycatcher genome, physically mapped the assembly to chromosomes using a low-density linkage map and re-sequenced population samples of each species. Here we show that the genomic landscape of species differentiation is highly heterogeneous with approximately 50 'divergence islands' showing up to 50-fold higher sequence divergence than the genomic background. These non-randomly distributed islands, with between one and three regions of elevated divergence per chromosome irrespective of chromosome size, are characterized by reduced levels of nucleotide diversity, skewed allele-frequency spectra, elevated levels of linkage disequilibrium and reduced proportions of shared polymorphisms in both species, indicative of parallel episodes of selection. Proximity of divergence peaks to genomic regions resistant to sequence assembly, potentially including centromeres and telomeres, indicate that complex repeat structures may drive species divergence. A much higher background level of species divergence of the Z chromosome, and a lower proportion of shared polymorphisms, indicate that sex chromosomes and autosomes are at different stages of speciation. This study provides a roadmap to the emerging field of speciation genomics.
  •  
2.
  • Künstner, Axel, et al. (författare)
  • Gene content and patterns of gene expression in the flycatcher genome
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • Phenotypic evolution may be driven by changes in the sequence of protein-coding genes or by the way (when, where, at what level) proteins are expressed. Generally, our knowledge about the evolution of gene expression is relatively limited, and this is particularly so for wild populations. Collared flycatcher (Ficedula albicollis) and pied flycatcher (F. hypoleuca) are two recently diverged passerine birds, which have been subject to extensive ecological research, including aspects of speciation. We obtained RNA-seq data with Illumina technology from 10 adult individuals per species (five females and five males) using brain, kidney, liver, lung, muscle, skin, ovary, and testis tissue (plus eight embryos of each species). A total of more than 1 billion sequencing reads were assembled into >15.000 gene models for each species. The proportion of differentially expressed genes between species ranged from 8% to 18% per adult tissue. Very few GO categories were found to be overrepresented among differentially expressed genes, which at least in part might reflect that orphan and not yet annotated genes are prone to evolve more rapidly in gene expression level. However, in testis, the category olfactory receptor activity was significantly overrepresented among differentially expressed genes and it is of interest to note that this category of genes is involved in sperm-egg communication and thereby potentially may contribute to reproductive incompatibility between the two species. Genes with a high degree of differentiation in gene expression between species tended to have high rates of sequence evolution (high dN/dS). Overall, this study illustrates both the feasibility and usefulness of deep transcriptome sequencing in non-model organisms.
  •  
3.
  • Smeds, Linnea, et al. (författare)
  • ConDeTri : A content dependent read trimmer for Illumina data
  • 2011
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:10, s. e26314-
  • Tidskriftsartikel (refereegranskat)abstract
    • During the last few years, DNA and RNA sequencing have started to play an increasingly important role in biological and medical applications, especially due to the greater amount of sequencing data yielded from the new sequencing machines and the enormous decrease in sequencing costs. Particularly, Illumina/Solexa sequencing has had an increasing impact on gathering data from model and non-model organisms. However, accurate and easy to use tools for quality filtering have not yet been established. We present ConDeTri, a method for content dependent read trimming for next generation sequencing data using quality scores of each individual base. The main focus of the method is to remove sequencing errors from reads so that sequencing reads can be standardized. Another aspect of the method is to incorporate read trimming in next-generation sequencing data processing and analysis pipelines. It can process single-end and paired-end sequence data of arbitrary length and it is independent from sequencing coverage and user interaction. ConDeTri is able to trim and remove reads with low quality scores to save computational time and memory usage during de novo assemblies.  Low coverage or large genome sequencing projects will especially gain from trimming reads.  The method can easily be incorporated into preprocessing and analysis pipelines for Illumina data. Availability and implementation: Freely available on the web athttp://code.google.com/p/condetri
  •  
4.
  • Warren, Wesley C, et al. (författare)
  • The genome of a songbird
  • 2010
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 464:7289, s. 757-762
  • Tidskriftsartikel (refereegranskat)abstract
    • The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken-the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy