SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kaiser M) ;hsvcat:2"

Sökning: WFRF:(Kaiser M) > Teknik

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Falconer, D., et al. (författare)
  • New Air-interface Technologies and Deployment Concepts
  • 2006
  • Ingår i: Technologies for the Wireless Future: Wireless World Research Forum (WWRF). - Chichester, UK : John Wiley & Sons. - 0470029056 - 9780470029053 ; , s. 131-226
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)
  •  
2.
  • Kaiser, M., et al. (författare)
  • VEDLIoT: Very Efficient Deep Learning in IoT
  • 2022
  • Ingår i: Proceedings of the 2022 Design, Automation and Test in Europe Conference and Exhibition, DATE 2022. - : IEEE. - 9783981926361
  • Konferensbidrag (refereegranskat)abstract
    • The VEDLIoT project targets the development of energy-efficient Deep Learning for distributed AIoT applications. A holistic approach is used to optimize algorithms while also dealing with safety and security challenges. The approach is based on a modular and scalable cognitive IoT hardware platform. Using modular microserver technology enables the user to configure the hardware to satisfy a wide range of applications. VEDLIoT offers a complete design flow for Next-Generation IoT devices required for collaboratively solving complex Deep Learning applications across distributed systems. The methods are tested on various use-cases ranging from Smart Home to Automotive and Industrial IoT appliances. VEDLIoT is an H2020 EU project which started in November 2020. It is currently in an intermediate stage with the first results available.
  •  
3.
  • Backes, Claudia, et al. (författare)
  • Production and processing of graphene and related materials
  • 2020
  • Ingår i: 2D Materials. - : IOP Publishing. - 2053-1583. ; 7:2
  • Tidskriftsartikel (refereegranskat)abstract
    • We present an overview of the main techniques for production and processing of graphene and related materials (GRMs), as well as the key characterization procedures. We adopt a 'hands-on' approach, providing practical details and procedures as derived from literature as well as from the authors' experience, in order to enable the reader to reproduce the results. Section I is devoted to 'bottom up' approaches, whereby individual constituents are pieced together into more complex structures. We consider graphene nanoribbons (GNRs) produced either by solution processing or by on-surface synthesis in ultra high vacuum (UHV), as well carbon nanomembranes (CNM). Production of a variety of GNRs with tailored band gaps and edge shapes is now possible. CNMs can be tuned in terms of porosity, crystallinity and electronic behaviour. Section II covers 'top down' techniques. These rely on breaking down of a layered precursor, in the graphene case usually natural crystals like graphite or artificially synthesized materials, such as highly oriented pyrolythic graphite, monolayers or few layers (FL) flakes. The main focus of this section is on various exfoliation techniques in a liquid media, either intercalation or liquid phase exfoliation (LPE). The choice of precursor, exfoliation method, medium as well as the control of parameters such as time or temperature are crucial. A definite choice of parameters and conditions yields a particular material with specific properties that makes it more suitable for a targeted application. We cover protocols for the graphitic precursors to graphene oxide (GO). This is an important material for a range of applications in biomedicine, energy storage, nanocomposites, etc. Hummers' and modified Hummers' methods are used to make GO that subsequently can be reduced to obtain reduced graphene oxide (RGO) with a variety of strategies. GO flakes are also employed to prepare three-dimensional (3d) low density structures, such as sponges, foams, hydro- or aerogels. The assembly of flakes into 3d structures can provide improved mechanical properties. Aerogels with a highly open structure, with interconnected hierarchical pores, can enhance the accessibility to the whole surface area, as relevant for a number of applications, such as energy storage. The main recipes to yield graphite intercalation compounds (GICs) are also discussed. GICs are suitable precursors for covalent functionalization of graphene, but can also be used for the synthesis of uncharged graphene in solution. Degradation of the molecules intercalated in GICs can be triggered by high temperature treatment or microwave irradiation, creating a gas pressure surge in graphite and exfoliation. Electrochemical exfoliation by applying a voltage in an electrolyte to a graphite electrode can be tuned by varying precursors, electrolytes and potential. Graphite electrodes can be either negatively or positively intercalated to obtain GICs that are subsequently exfoliated. We also discuss the materials that can be amenable to exfoliation, by employing a theoretical data-mining approach. The exfoliation of LMs usually results in a heterogeneous dispersion of flakes with different lateral size and thickness. This is a critical bottleneck for applications, and hinders the full exploitation of GRMs produced by solution processing. The establishment of procedures to control the morphological properties of exfoliated GRMs, which also need to be industrially scalable, is one of the key needs. Section III deals with the processing of flakes. (Ultra)centrifugation techniques have thus far been the most investigated to sort GRMs following ultrasonication, shear mixing, ball milling, microfluidization, and wet-jet milling. It allows sorting by size and thickness. Inks formulated from GRM dispersions can be printed using a number of processes, from inkjet to screen printing. Each technique has specific rheological requirements, as well as geometrical constraints. The solvent choice is critical, not only for the GRM stability, but also in terms of optimizing printing on different substrates, such as glass, Si, plastic, paper, etc, all with different surface energies. Chemical modifications of such substrates is also a key step. Sections IV-VII are devoted to the growth of GRMs on various substrates and their processing after growth to place them on the surface of choice for specific applications. The substrate for graphene growth is a key determinant of the nature and quality of the resultant film. The lattice mismatch between graphene and substrate influences the resulting crystallinity. Growth on insulators, such as SiO2, typically results in films with small crystallites, whereas growth on the close-packed surfaces of metals yields highly crystalline films. Section IV outlines the growth of graphene on SiC substrates. This satisfies the requirements for electronic applications, with well-defined graphene-substrate interface, low trapped impurities and no need for transfer. It also allows graphene structures and devices to be measured directly on the growth substrate. The flatness of the substrate results in graphene with minimal strain and ripples on large areas, allowing spectroscopies and surface science to be performed. We also discuss the surface engineering by intercalation of the resulting graphene, its integration with Si-wafers and the production of nanostructures with the desired shape, with no need for patterning. Section V deals with chemical vapour deposition (CVD) onto various transition metals and on insulators. Growth on Ni results in graphitized polycrystalline films. While the thickness of these films can be optimized by controlling the deposition parameters, such as the type of hydrocarbon precursor and temperature, it is difficult to attain single layer graphene (SLG) across large areas, owing to the simultaneous nucleation/growth and solution/precipitation mechanisms. The differing characteristics of polycrystalline Ni films facilitate the growth of graphitic layers at different rates, resulting in regions with differing numbers of graphitic layers. High-quality films can be grown on Cu. Cu is available in a variety of shapes and forms, such as foils, bulks, foams, thin films on other materials and powders, making it attractive for industrial production of large area graphene films. The push to use CVD graphene in applications has also triggered a research line for the direct growth on insulators. The quality of the resulting films is lower than possible to date on metals, but enough, in terms of transmittance and resistivity, for many applications as described in section V. Transfer technologies are the focus of section VI. CVD synthesis of graphene on metals and bottom up molecular approaches require SLG to be transferred to the final target substrates. To have technological impact, the advances in production of high-quality large-area CVD graphene must be commensurate with those on transfer and placement on the final substrates. This is a prerequisite for most applications, such as touch panels, anticorrosion coatings, transparent electrodes and gas sensors etc. New strategies have improved the transferred graphene quality, making CVD graphene a feasible option for CMOS foundries. Methods based on complete etching of the metal substrate in suitable etchants, typically iron chloride, ammonium persulfate, or hydrogen chloride although reliable, are time- and resource-consuming, with damage to graphene and production of metal and etchant residues. Electrochemical delamination in a low-concentration aqueous solution is an alternative. In this case metallic substrates can be reused. Dry transfer is less detrimental for the SLG quality, enabling a deterministic transfer. There is a large range of layered materials (LMs) beyond graphite. Only few of them have been already exfoliated and fully characterized. Section VII deals with the growth of some of these materials. Amongst them, h-BN, transition metal tri- and di-chalcogenides are of paramount importance. The growth of h-BN is at present considered essential for the development of graphene in (opto) electronic applications, as h-BN is ideal as capping layer or substrate. The interesting optical and electronic properties of TMDs also require the development of scalable methods for their production. Large scale growth using chemical/physical vapour deposition or thermal assisted conversion has been thus far limited to a small set, such as h-BN or some TMDs. Heterostructures could also be directly grown. Section VIII discusses advances in GRM functionalization. A broad range of organic molecules can be anchored to the sp(2) basal plane by reductive functionalization. Negatively charged graphene can be prepared in liquid phase (e.g. via intercalation chemistry or electrochemically) and can react with electrophiles. This can be achieved both in dispersion or on substrate. The functional groups of GO can be further derivatized. Graphene can also be noncovalently functionalized, in particular with polycyclic aromatic hydrocarbons that assemble on the sp(2) carbon network by pi-pi stacking. In the liquid phase, this can enhance the colloidal stability of SLG/FLG. Approaches to achieve noncovalent on-substrate functionalization are also discussed, which can chemically dope graphene. Research efforts to derivatize CNMs are also summarized, as well as novel routes to selectively address defect sites. In dispersion, edges are the most dominant defects and can be covalently modified. This enhances colloidal stability without modifying the graphene basal plane. Basal plane point defects can also be modified, passivated and healed in ultra-high vacuum. The decoration of graphene with metal nanoparticles (NPs) has also received considerable attention, as it allows to exploit synergistic effects between NPs and graphene. Decoration can be either achieved chemically or in the gas phase. All LMs,
  •  
4.
  • Salami, B., et al. (författare)
  • LEGaTO: Low-Energy, Secure, and Resilient Toolset for Heterogeneous Computing
  • 2020
  • Ingår i: PROCEEDINGS OF THE 2020 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2020). - 1530-1591. - 9783981926347 ; , s. 169-174
  • Konferensbidrag (refereegranskat)abstract
    • The LEGaTO project leverages task-based programming models to provide a software ecosystem for Made in-Europe heterogeneous hardware composed of CPUs, GPUs, FPGAs and dataflow engines. The aim is to attain one order of magnitude energy savings from the edge to the converged cloud/HPC, balanced with the security and resilience challenges. LEGaTO is an ongoing three-year EU H2020 project started in December 2017.
  •  
5.
  • Griessl, René, et al. (författare)
  • A Scalable, Heterogeneous Hardware Platform for Accelerated AIoT based on Microservers
  • 2023
  • Ingår i: Shaping the Future of IoT with Edge Intelligence How Edge Computing Enables the Next Generation of IoT Applications. - 9788770040273 ; , s. 179-196
  • Bokkapitel (övrigt vetenskapligt/konstnärligt)abstract
    • Performance and energy efficiency are key aspects of next-generation AIoT hardware. This chapter presents a scalable, heterogeneous hardware platform for accelerated AIoT based on microserver technology. It integrates several accelerator platforms based on technologies like CPUs, embedded GPUs, FPGAs, or specialized ASICs, supporting the full range of the cloud−edgeIoT continuum. The modular microserver approach enables the integrationof different, heterogeneous accelerators into one platform. Benchmarking the various accelerators takes performance, energy efficiency, and accuracy into account. The results provide a solid overview of available accelerator solutions and guide hardware selection for AIoT applications from the far edge to the cloud.
  •  
6.
  • Griessl, R., et al. (författare)
  • Evaluation of heterogeneous AIoT Accelerators within VEDLIoT
  • 2023
  • Ingår i: Proceedings -Design, Automation and Test in Europe, DATE. - 1530-1591. ; 2023-April
  • Konferensbidrag (refereegranskat)abstract
    • Within VEDLIoT, a project targeting the development of energy-efficient Deep Learning for distributed AIoT applications, several accelerator platforms based on technologies like CPUs, embedded GPUs, FPGAs, or specialized ASICs are evaluated. The VEDLIoT approach is based on modular and scalable cognitive IoT hardware platforms. Modular microserver technology enables the integration of different, heterogeneous accelerators into one platform. Benchmarking of the different accelerators takes into account performance, energy efficiency and accuracy. The results in this paper provide a solid overview regarding available accelerator solutions and provide guidance for hardware selection for AIoT applications from far edge to cloud. VEDLIoT is an H2020 EU project which started in November 2020. It is currently in an intermediate stage. The focus is on the considerations of the performance and energy efficiency of hardware accelerators. Apart from the hardware and accelerator focus presented in this paper, the project also covers toolchain, security and safety aspects. The resulting technology is tested on a wide range of AIoT applications.
  •  
7.
  • Kaiser, M., et al. (författare)
  • Nucleation and growth of polycrystalline SiC
  • 2014
  • Ingår i: IOP Conference Series. - : Institute of Physics Publishing (IOPP). ; 56:1, s. 012001-
  • Konferensbidrag (refereegranskat)abstract
    • The nucleation and bulk growth of polycrystalline SiC in a 2 inch PVT setup using isostatic and pyrolytic graphite as substrates was studied. Textured nucleation occurs under near-thermal equilibrium conditions at the initial growth stage with hexagonal platelet shaped crystallites of 4H, 6H and 15R polytypes. It is found that pyrolytic graphite results in enhanced texturing of the nucleating gas species. Reducing the pressure leads to growth of the crystallites until a closed polycrystalline SiC layer containing voids with a rough surface is developed. Bulk growth was conducted at 35 mbar Ar pressure at 2250°C in diffusion limited mass transport regime generating a convex shaped growth form of the solid-gas interface leading to lateral expansion of virtually [001] oriented crystallites. Growth at 2350°C led to the stabilization of 6H polytypic grains. The micropipe density in the bulk strongly depends on the substrate used.
  •  
8.
  • Ou, Y., et al. (författare)
  • Fabrication of broadband antireflective sub-wavelength structures on fluorescent SiC
  • 2013
  • Ingår i: Materials Science Forum. - 9783037856246 ; , s. 1024-1027
  • Konferensbidrag (refereegranskat)abstract
    • Surface nanocones on 6H-SiC have been developed and demonstrated as an effective method of enhancing the light extraction efficiency from fluorescent SiC layers. The surface reflectance, measured from the opposite direction of light emission, over a broad bandwidth range is significantly suppressed from 20.5% to 1.0% after introducing the sub-wavelength structures. An omnidirectional light harvesting enhancement (>91%), is also achieved which promotes fluorescent SiC as a good candidate of wavelength converter for white light-emitting diodes
  •  
9.
  • Schimmel, S., et al. (författare)
  • The role of defects in fluorescent silicon carbide layers grown by sublimation epitaxy
  • 2014
  • Ingår i: IOP Conference Series. - : Institute of Physics Publishing (IOPP). ; 56:1, s. 012002-
  • Konferensbidrag (refereegranskat)abstract
    • Donor-acceptor co-doped SiC is a promising light converter for novel monolithic all-semiconductor white LEDs due to its broad-band donor-acceptor pair luminescence and potentially high internal quantum efficiency. Besides sufficiently high doping concentrations in an appropriate ratio yielding short radiative lifetimes, long nonradiative lifetimes are crucial for efficient light conversion. The impact of different types of defects is studied by characterizing fluorescent silicon carbide layers with regard to photoluminescence intensity, homogeneity and efficiency taking into account dislocation density and distribution. Different doping concentrations and variations in gas phase composition and pressure are investigated.
  •  
10.
  • Batra, A., et al. (författare)
  • Analysis of Surface Roughness with 3D SAR Imaging at 1.5 THz
  • 2023
  • Ingår i: 2023 48TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER, AND TERAHERTZ WAVES, IRMMW-THZ. - : Institute of Electrical and Electronics Engineers (IEEE). - 9798350336603
  • Konferensbidrag (refereegranskat)abstract
    • The expansion of the synthetic aperture radar (SAR) to the emerging THz spectrum has enabled a new era of applications in the areas of automobile, security, non-destructive testing, and material characterization. Thanks to the sub-mm wavelength, extraction of material surface properties is possible and of significant interest for the THz SAR applications. The properties define the surface scattering behavior, which is relational to the applied frequency. This study focuses on surface classification. We evaluate the scattering behavior of a rough surface and a smooth surface at 1.5 THz based on a SAR processing sequence that is introduced in this paper. First, we form the 3D SAR images of the metallic objects and then evaluate the surface properties based on the variation in the energy reflected by the object's surface.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
konferensbidrag (10)
tidskriftsartikel (4)
bokkapitel (2)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (2)
Författare/redaktör
Kaiser, M. Shamim (4)
Petersen Moura Tranc ... (4)
Ou, H. (3)
Syväjärvi, Mikael (3)
Linnarsson, Margaret ... (3)
Hossain, Mohammad Sh ... (3)
visa fler...
Andersson, Karl (3)
Kaiser, Martin (2)
Hagemeyer, Jens (2)
Tigges, L. (2)
Kucza, Nils (2)
Zhao, X. (1)
Kaiser, S. (1)
Matsumoto, T. (1)
Alvarez, C. (1)
Weiss, R. (1)
Alexiou, A (1)
Hossain, Mohammad Sh ... (1)
Andersson, Karl, 197 ... (1)
Hellander, Andreas (1)
Li, Lei (1)
Brismar, Hjalmar (1)
Eriksson, O (1)
Yang, Sheng (1)
Hampl, Ales (1)
Andersson, S (1)
Morandi, Vittorio (1)
Yakimova, Rositsa (1)
Lipsanen, Harri (1)
Bengtsson, Mats (1)
Botas, Cristina (1)
Carriazo, Daniel (1)
Rojo, Teofilo (1)
Beyer, André (1)
Mahmud, Mufti (1)
Zetterberg, Per (1)
Knauss, Eric, 1977 (1)
Czink, N. (1)
Heyn, Hans-Martin, 1 ... (1)
Manivannan, Madhavan ... (1)
Pettersson, Mats, 19 ... (1)
Vu, Viet Thuy, 1977- (1)
Fried, Kaj (1)
Pericas, Miquel, 197 ... (1)
Palermo, Vincenzo, 1 ... (1)
Parthenios, John (1)
Papagelis, Konstanti ... (1)
Marzari, Nicola (1)
Hämäläinen, M (1)
Johansson, Anne-Sofi ... (1)
visa färre...
Lärosäte
Kungliga Tekniska Högskolan (5)
Chalmers tekniska högskola (5)
Luleå tekniska universitet (4)
Linköpings universitet (4)
Göteborgs universitet (1)
Uppsala universitet (1)
visa fler...
Lunds universitet (1)
RISE (1)
Karolinska Institutet (1)
Blekinge Tekniska Högskola (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (8)
Medicin och hälsovetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy