SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kalpouzos Grégoria) ;hsvcat:5"

Sökning: WFRF:(Kalpouzos Grégoria) > Samhällsvetenskap

  • Resultat 1-10 av 18
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Becker, Nina, et al. (författare)
  • Differential Effects of Encoding Instructions on Brain Activity Patterns of Item and Associative Memory
  • 2017
  • Ingår i: Journal of cognitive neuroscience. - : MIT Press - Journals. - 0898-929X .- 1530-8898. ; 29:3, s. 545-559
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence from neuroimaging studies suggests a critical role of hippocampus and inferior frontal gyrus (IFG) in associative relative to item encoding. Here, we investigated similarities and differences in functional brain correlates for associative and item memory as a function of encoding instruction. Participants received either incidental (animacy judgments) or intentional encoding instructions while fMRI was employed during the encoding of associations and items. In a subsequent recognition task, memory performance of participants receiving intentional encoding instructions was higher compared with those receiving incidental encoding instructions. Furthermore, participants remembered more items than associations, regardless of encoding instruction. Greater brain activation in the left anterior hippocampus was observed for intentionally compared with incidentally encoded associations, although activity in this region was not modulated by the type of instruction for encoded items. Furthermore, greater activity in the left anterior hippocampus and left IFG was observed during intentional associative compared with item encoding. The same regions were related to subsequent memory of intentionally encoded associations and were thus task relevant. Similarly, connectivity of the anterior hippocampus to the right superior temporal lobe and IFG was uniquely linked to subsequent memory of intentionally encoded associations. Our study demonstrates the differential involvement of anterior hippocampus in intentional relative to incidental associative encoding. This finding likely reflects that the intent to remember triggers a specific binding process accomplished by this region.
  •  
2.
  • Brehmer, Yvonne, et al. (författare)
  • Plasticity of brain and cognition in older adults
  • 2014
  • Ingår i: Psychological Research. - : Springer Science and Business Media LLC. - 0340-0727 .- 1430-2772. ; 78:6, s. 790-802
  • Forskningsöversikt (refereegranskat)abstract
    • Aging is typically related to changes in brain and cognition, but the aging process is heterogeneous and differs between individuals. Recent research has started investigating the influence of cognitive and physical training on cognitive performance, functional brain activity, and brain structure in old age. The functional relevance of neural changes and the interactions among these changes following interventions is still a matter of debate. Here we selectively review research on structural and functional brain correlates of training-induced performance changes in healthy older adults and present exemplary longitudinal intervention studies sorted by the type of training applied (i.e., strategy-based training, process-specific training, and physical exercise). Although many training studies have been conducted recently, within each task domain, the number of studies that used comparable methods and techniques to assess behavioral and neural changes is limited. We suggest that future studies should include a multimodal approach to enhance the understanding of the relation between different levels of brain changes in aging and those changes that result from training. Investigating inter-individual differences in intervention-induced behavioral and neuronal changes would provide more information about who would benefit from a specific intervention and why. In addition, a more systematic examination of the time course of training-related structural and functional changes would improve the current level of knowledge about how learning is implemented in the brain and facilitate our understanding of contradictory results.
  •  
3.
  • Ferencz, Beata, et al. (författare)
  • The Benefits of Staying Active in Old Age : Physical Activity Counteracts the Negative Influence of PICALM, BIN1, and CLU Risk Alleles on Episodic Memory Functioning
  • 2014
  • Ingår i: Psychology and Aging. - : American Psychological Association (APA). - 0882-7974 .- 1939-1498. ; 29:2, s. 440-449
  • Tidskriftsartikel (refereegranskat)abstract
    • PICALM, BIN1, CLU, and APOE are top candidate genes for Alzheimer's disease, and they influence episodic memory performance in old age. Physical activity, however, has been shown to protect against age-related decline and counteract genetic influences on cognition. The aims of this study were to assess whether (a) a genetic risk constellation of PICALM, BIN1, and CLU polymorphisms influences cognitive performance in old age; and (b) if physical activity moderates this effect. Data from the SNAC-K population-based study were used, including 2,480 individuals (age range = 60 to 100 years) free of dementia at baseline and at 3- to 6-year follow-ups. Tasks assessing episodic memory, perceptual speed, knowledge, and verbal fluency were administered. Physical activity was measured using self-reports. Individuals who had engaged in frequent health-or fitness-enhancing activities within the past year were compared with those who were inactive. Genetic risk scores were computed based on an integration of risk alleles for PICALM (rs3851179 G allele, rs541458 T allele), BIN1 (rs744373 G allele), and CLU (rs11136000 T allele). High genetic risk was associated with reduced episodic memory performance, controlling for age, education, vascular risk factors, chronic diseases, activities of daily living, and APOE gene status. Critically, physical activity attenuated the effects of genetic risk on episodic memory. Our findings suggest that participants with high genetic risk who maintain a physically active lifestyle show selective benefits in episodic memory performance.
  •  
4.
  • Ferencz, Beata, et al. (författare)
  • The influence of APOE and TOMM40 polymorphisms on hippocampal volume and episodic memory in old age
  • 2013
  • Ingår i: Frontiers in Human Neuroscience. - : Frontiers Media SA. - 1662-5161. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Mitochondrial dysfunction is implicated in neurodegenerative disorders, such as Alzheimer's disease (AD). Translocase of outer mitochondrial membrane 40 (TOMM40) may be influential in this regard by influencing mitochondrial neurotoxicity. Little is known about the influence of the TOMM40 gene on hippocampal (HC) volume and episodic memory (EM), particularly in healthy older adults. Thus, we sought to discern the influence of TOMM40 single nucleotide polymorphisms (SNPs), which have previously been associated with medial temporal lobe integrity (rs11556505 and rs2075650), on HC volume and EM. The study sample consisted of individuals from the Swedish National Study on Aging and Care in Kungsholmen (SNAC-K) who were free of dementia and known neurological disorders, and 6087 years of age (n = 424). EM was measured by using a 16-item word list with a 2-min free recall period and delineation of the HC was performed manually. The influence of Apolipoprotein E (APOE) and TOMM40 was assessed by 2 x 2 ANOVAs and partial correlations. There was no effect of APOE and TOMM40 on EM performance and HC volume. However, partial correlations revealed that HC volume was positively associated with free recall performance (r = 0.21, p < 0.01, r(2) = 0.04). When further stratified for TOMM40, the observed association between HC volume and free recall in APOE epsilon 4 carriers was present in combination with TOMM40 rs11556505 any T (r = 0.28, p < 0.01, R-2 = 0.08) and rs2075650 any G (r = 0.28, p < 0.01, R-2 = 0.08) risk alleles. This pattern might reflect higher reliance on HC volume for adequate EM performance among APOE epsilon 4 carriers with additional TOMM40 risk alleles suggesting that the TOMM40 gene cannot merely be considered a marker of APOE genotype. Nevertheless, neither APOE nor TOMM40 influenced HC volume or EM in this population-based sample of cognitively intact individuals over the age of 60.
  •  
5.
  • Gerritsen, L., et al. (författare)
  • The influence of negative life events on hippocampal and amygdala volumes in old age : a life-course perspective
  • 2014
  • Ingår i: Psychological Medicine. - 0033-2917 .- 1469-8978. ; 45:6, s. 1219-1228
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Psychosocial stress has been related to changes in the nervous system, with both adaptive and maladaptive consequences. The aim of this study was to examine the relationship of negative events experienced throughout the entire lifespan and hippocampal and amygdala volumes in older adults.METHOD: In 466 non-demented old adults (age range 60-96 years, 58% female), hippocampal and amygdala volumes were segmented using Freesurfer. Negative life events and the age at which these events occurred were assessed by means of a structured questionnaire. Using generalized linear models, hippocampal and amygdala volumes were estimated with life events as independent variables. The statistical analyses were adjusted for age, gender, intracranial volume, lifestyle factors, cardiovascular risk factors, depressive symptoms, and cognitive functioning.RESULTS: Total number of negative life events and of late-life events, but not of early-life, early-adulthood, or middle-adulthood events, was related to larger amygdala volume. There were interactions of early-life events with age and gender. Participants who reported two or more early-life events had significantly smaller amygdala and hippocampal volumes with increasing age. Furthermore, smaller hippocampal volume was found in men who reported two or more early-life events, but not in women.CONCLUSIONS: These results suggest that the effect of negative life events on the brain depends on the time when the events occurred, with the strongest effects observed during the critical time periods of early and late life.
  •  
6.
  • Kalpouzos, Grégoria, et al. (författare)
  • Impact of negative emotion on the neural correlates of long-term recognition in younger and older adults
  • 2012
  • Ingår i: Frontiers in Integrative Neuroscience. - : Frontiers Media SA. - 1662-5145. ; 6:74, s. 1-25
  • Tidskriftsartikel (refereegranskat)abstract
    • Some studies have suggested that the memory advantage for negative emotional information over neutral information (“negativity effect”) is reduced in aging. Besides the fact that most findings are based on immediate retrieval, the neural underpinnings of long-term emotional memory in aging have so far not been investigated. To address these issues, we assessed recognition of neutral and negative scenes after 1- and 3-week retention intervals in younger and older adults using functional magnetic resonance imaging. We further used an event-related design in order to disentangle successful, false, and true recognition. This study revealed four key findings: (1) increased retention interval induced an increased rate of false recognitions for negative scenes, canceling out the negativity effect (present for hit rates only) on discrimination in both younger and older adults; (2) in younger, but not older, adults, reduced activity of the medial temporal lobe was observed over time for neutral scenes, but not for negative scenes, where stable or increased activity was seen; (3) engagement of amygdala (AMG) was observed in older adults after a 3-week delay during successful recognition of negative scenes (hits vs. misses) in comparison with neutral scenes, which may indicate engagement of automatic processes, but engagement of ventrolateral prefrontal cortex was unrelated to AMG activity and performance; and (4) after 3 weeks, but not after 1 week, true recognition of negative scenes was characterized by more activity in left hippocampus and lateral occipito-temporal regions (hits vs. false alarms). As these regions are known to be related to consolidation mechanisms, the observed pattern may indicate the presence of delayed consolidation of true memories. Nonetheless, older adults’ low performance in discrimination of negative scenes could reflect the fact that overall, after long delays of retention, they rely more on general information rather than on perceptual detail in making recognition judgments.
  •  
7.
  • Kalpouzos, Gregoria, et al. (författare)
  • Local brain atrophy accounts for functional activity differences in normal aging
  • 2012
  • Ingår i: Neurobiology of Aging. - : Elsevier BV. - 0197-4580 .- 1558-1497. ; 33:3, s. 623.e1-
  • Tidskriftsartikel (refereegranskat)abstract
    • Functional brain imaging studies of normal aging typically show age-related under-and overactivations during episodic memory tasks. Older individuals also undergo nonuniform gray matter volume (GMv) loss. Thus, age differences in functional brain activity could at least in part result from local atrophy. We conducted a series of voxel-based blood oxygen level-dependent (BOLD)-GMv analyses to highlight whether age-related under-and overrecruitment was accounted for by GMv changes. Occipital GMv loss accounted for underrecruitment at encoding. Efficiency reduction of sensory-perceptual mechanisms underpinned by these areas may partly be due to local atrophy. At retrieval, local GMv loss accounted for age-related overactivation of left dorsolateral prefrontal cortex, but not of left dorsomedial prefrontal cortex. Local atrophy also accounted for age-related overactivation in left lateral parietal cortex. Activity in these frontoparietal regions correlated with performance in the older group. Atrophy in the overrecruited regions was modest in comparison with other regions as shown by a between-group voxel-based morphometry comparison. Collectively, these findings link age-related structural differences to age-related functional under-as well as overrecruitment.
  •  
8.
  • Kalpouzos, Grégoria, et al. (författare)
  • Neurocognitive systems related to real-world prospective memory.
  • 2010
  • Ingår i: PLOS ONE. - San Francisco : Public library of Science. - 1932-6203. ; 5:10, s. e13304-
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Prospective memory (PM) denotes the ability to remember to perform actions in the future. It has been argued that standard laboratory paradigms fail to capture core aspects of PM.METHODOLOGY/PRINCIPAL FINDINGS: We combined functional MRI, virtual reality, eye-tracking and verbal reports to explore the dynamic allocation of neurocognitive processes during a naturalistic PM task where individuals performed errands in a realistic model of their residential town. Based on eye movement data and verbal reports, we modeled PM as an iterative loop of five sustained and transient phases: intention maintenance before target detection (TD), TD, intention maintenance after TD, action, and switching, the latter representing the activation of a new intention in mind. The fMRI analyses revealed continuous engagement of a top-down fronto-parietal network throughout the entire task, likely subserving goal maintenance in mind. In addition, a shift was observed from a perceptual (occipital) system while searching for places to go, to a mnemonic (temporo-parietal, fronto-hippocampal) system for remembering what actions to perform after TD. Updating of the top-down fronto-parietal network occurred at both TD and switching, the latter likely also being characterized by frontopolar activity.CONCLUSION/SIGNIFICANCE: Taken together, these findings show how brain systems complementary interact during real-world PM, and support a more complete model of PM that can be applied to naturalistic PM tasks and that we named PROspective MEmory DYnamic (PROMEDY) model because of its dynamics on both multi-phase iteration and the interactions of distinct neurocognitive networks.
  •  
9.
  • Lecouvey, Gregory, et al. (författare)
  • Binding in working memory and frontal lobe in normal aging : is there any similarity with autism?
  • 2015
  • Ingår i: Frontiers in Human Neuroscience. - : Frontiers Media SA. - 1662-5161. ; 9
  • Tidskriftsartikel (refereegranskat)abstract
    • Some studies highlight similarities between Autism Spectrum Disorder (ASP and healthy aging. Indeed, the decline in older individuals' ability to create a unified representation of the individual features of an event is thought to arise from a disruption of binding within the episodic buffer of working memory (WM) as the same way as observed in ASD. In both cases, this deficit may result from an abnormal engagement of a frontohippocampal network. The objective of the present study is to identify both cognitive processes and neural substrates associated with the deficit of binding in WM in healthy aging. We studied the capacity of binding and the cognitive processes that might subtend its decline in 72 healthy participants aged 18-84 years. We examined the behavioral data in relation to the changes in brain metabolism associated with the age-related decline in a subgroup of 34 healthy participants aged 20-77 years using the resting state [F-18] fluorodeoxyglucose positron emission tomography (F-18-FDG PET). Forward stepwise regression analyses showed that the age-related decline in binding was partially explained by a decline in inhibition and processing speed. PET correlation analyses indicated that metabolism of the frontal regions, anterior and middle cingulate cortices is implicated in this phenomenon. These data suggest that executive functions and processing speed may play a crucial role in the capacity to integrate unified representations in memory in aging. Possible implications are discussed in ASD.
  •  
10.
  • Lövdén, Martin, et al. (författare)
  • The dimensionality of between-person differences in white matter microstructure in old age
  • 2013
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 34:6, s. 1386-1398
  • Tidskriftsartikel (refereegranskat)abstract
    • Between-person differences in white matter microstructure may partly generalize across the brain and partly play out differently for distinct tracts. We used diffusion-tensor imaging and structural equation modeling to investigate this issue in a sample of 260 adults aged 60–87 years. Mean fractional anisotropy and mean diffusivity of seven white matter tracts in each hemisphere were quantified. Results showed good fit of a model positing that individual differences in white matter microstructure are structured according to tracts. A general factor, although accounting for variance in the measures, did not adequately represent the individual differences. This indicates the presence of a substantial amount of tract-specific individual differences in white matter microstructure. In addition, individual differences are to a varying degree shared between tracts, indicating that general factors also affect white matter microstructure. Age-related differences in white matter microstructure were present for all tracts. Correlations among tract factors did not generally increase as a function of age, suggesting that aging is not a process with homogenous effects on white matter microstructure across the brain. These findings highlight the need for future research to examine whether relations between white matter microstructure and diverse outcomes are specific or general. Hum Brain Mapp, 2012. © 2012 Wiley Periodicals, Inc.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 18
Typ av publikation
tidskriftsartikel (15)
annan publikation (1)
konferensbidrag (1)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (17)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Kalpouzos, Grégoria (18)
Bäckman, Lars (8)
Persson, Jonas (5)
Laukka, Erika J. (4)
Lövdén, Martin (4)
Nyberg, Lars (3)
visa fler...
Fratiglioni, Laura (3)
Eriksson, Johan (3)
Rieckmann, Anna (3)
Brehmer, Yvonne (3)
Wahlund, Lars-Olof (2)
Nilsson, Lars-Göran (2)
Graff, Caroline (2)
Persson, Jonas, 1971 ... (2)
Sjölie, Daniel (2)
Becker, Nina (2)
Fischer, Håkan (2)
Keller, Lina (2)
Ferencz, Beata (2)
Seubert, Janina (1)
Westman, E (1)
Simmons, A. (1)
Larsson, Elna-Marie (1)
Pudas, Sara (1)
Backman, Lars (1)
Larsson, Maria (1)
Molin, Jonas (1)
Wahlund, L. O. (1)
Andersson, Mikael (1)
Eriksson, Elias (1)
Welmer, Anna-Karin (1)
Ryberg, Mats (1)
Zetterberg, Henrik (1)
Jonsson, Tomas (1)
Nyberg, Lars, 1966- (1)
Hummel, Thomas (1)
Kauppi, Karolina (1)
Salami, Alireza (1)
Naveh-Benjamin, Mosh ... (1)
Wenger, Elisabeth (1)
Li, Tie-Qiang (1)
Gerritsen, L (1)
Wang, Hui-Xin (1)
Angleman, Sara (1)
Viader, Fausto (1)
Garzón, Benjamín (1)
Sitnikov, Rouslan (1)
Söderlund, Hedvig (1)
Jonsson Laukka, Erik ... (1)
Macdonald, Stuart W ... (1)
visa färre...
Lärosäte
Stockholms universitet (17)
Karolinska Institutet (13)
Umeå universitet (8)
Örebro universitet (3)
Lunds universitet (2)
Göteborgs universitet (1)
visa fler...
Uppsala universitet (1)
visa färre...
Språk
Engelska (18)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (14)
Naturvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy