SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kalpouzos Grégoria) ;mspu:(researchreview)"

Sökning: WFRF:(Kalpouzos Grégoria) > Forskningsöversikt

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brehmer, Yvonne, et al. (författare)
  • Plasticity of brain and cognition in older adults
  • 2014
  • Ingår i: Psychological Research. - : Springer Science and Business Media LLC. - 0340-0727 .- 1430-2772. ; 78:6, s. 790-802
  • Forskningsöversikt (refereegranskat)abstract
    • Aging is typically related to changes in brain and cognition, but the aging process is heterogeneous and differs between individuals. Recent research has started investigating the influence of cognitive and physical training on cognitive performance, functional brain activity, and brain structure in old age. The functional relevance of neural changes and the interactions among these changes following interventions is still a matter of debate. Here we selectively review research on structural and functional brain correlates of training-induced performance changes in healthy older adults and present exemplary longitudinal intervention studies sorted by the type of training applied (i.e., strategy-based training, process-specific training, and physical exercise). Although many training studies have been conducted recently, within each task domain, the number of studies that used comparable methods and techniques to assess behavioral and neural changes is limited. We suggest that future studies should include a multimodal approach to enhance the understanding of the relation between different levels of brain changes in aging and those changes that result from training. Investigating inter-individual differences in intervention-induced behavioral and neuronal changes would provide more information about who would benefit from a specific intervention and why. In addition, a more systematic examination of the time course of training-related structural and functional changes would improve the current level of knowledge about how learning is implemented in the brain and facilitate our understanding of contradictory results.
  •  
2.
  • Ferencz, Beata, et al. (författare)
  • Promising Genetic Biomarkers of Preclinical Alzheimer's Disease : The Influence of APOE and TOMM40 on Brain Integrity
  • 2012
  • Ingår i: International Journal of Alzheimer's Disease. - : Hindawi Limited. - 2090-8024 .- 2090-0252. ; 2012
  • Forskningsöversikt (refereegranskat)abstract
    • Finding biomarkers constitutes a crucial step for early detection of Alzheimer's disease (AD). Brain imaging techniques have revealed structural alterations in the brain that may be phenotypic in preclinical AD. The most prominent polymorphism that has been associated with AD and related neural changes is the Apolipoprotein E (APOE) ε4. The translocase of outer mitochondrial membrane 40 (TOMM40), which is in linkage disequilibrium with APOE, has received increasing attention as a promising gene in AD. TOMM40 also impacts brain areas vulnerable in AD, by downstream apoptotic processes that forego extracellular amyloid beta aggregation. The present paper aims to extend on the mitochondrial influence in AD pathogenesis and we propose a TOMM40-induced disconnection of the medial temporal lobe. Finally, we discuss the possibility of mitochondrial dysfunction being the earliest pathophysiological event in AD, which indeed is supported by recent findings.
  •  
3.
  • Garzon, Benjamin, et al. (författare)
  • Automated segmentation of midbrain structures with high iron content
  • 2018
  • Ingår i: NeuroImage. - : Elsevier BV. - 1053-8119 .- 1095-9572. ; 170, s. 199-209
  • Forskningsöversikt (refereegranskat)abstract
    • The substantia nigra (SN), the subthalamic nucleus (STN), and the red nucleus (RN) are midbrain structures of ample interest in many neuroimaging studies, which may benefit from the availability of automated segmentation methods. The high iron content of these structures awards them high contrast in quantitative susceptibility mapping (QSM) images. We present a novel segmentation method that leverages the information of these images to produce automated segmentations of the SN, STN, and RN. The algorithm builds a map of spatial priors for the structures by non-linearly registering a set of manually-traced training labels to the midbrain. The priors are used to inform a Gaussian mixture model of the image intensities, with smoothness constraints imposed to ensure anatomical plausibility. The method was validated on manual segmentations from a sample of 40 healthy younger and older subjects. Average Dice scores were 0.81 (0.05) for the SN, 0.66 (0.14) for the STN and 0.88 (0.04) for the RN in the left hemisphere, and similar values were obtained for the right hemisphere. In all structures, volumes of manual and automatically obtained segmentations were significantly correlated. The algorithm showed lower accuracy on R-2* and T-2-weighted Fluid Attenuated Inversion Recovery (FLAIR) images, which are also sensitive to iron content. To illustrate an application of the method, we show that the automated segmentations were comparable to the manual ones regarding detection of age-related differences to putative iron content.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy