SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Kaplan D. L.) ;lar1:(lnu)"

Search: WFRF:(Kaplan D. L.) > Linnaeus University

  • Result 1-3 of 3
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Aliu, E., et al. (author)
  • Multiwavelength Observations of the Previously Unidentified Blazar RX J0648.7+1516
  • 2011
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 742:2
  • Journal article (peer-reviewed)abstract
    • We report on the VERITAS discovery of very high energy (VHE) gamma-ray emission above 200 GeV from the high-frequency-peaked BL Lac (HBL) object RX J0648.7+1516 (GB J0648+1516), associated with 1FGL J0648.8+1516. The photon spectrum above 200 GeV is fitted by a power law dN/dE = F 0(E/E 0)–Γ with a photon index Γ of 4.4 ± 0.8stat ± 0.3syst and a flux normalization F 0 of (2.3 ± 0.5stat ± 1.2sys) × 10–11 TeV–1 cm–2 s–1 with E 0 = 300 GeV. No VHE variability is detected during VERITAS observations of RX J0648.7+1516 between 2010 March 4 and April 15. Following the VHE discovery, the optical identification and spectroscopic redshift were obtained using the Shane 3 m Telescope at the Lick Observatory, showing the unidentified object to be a BL Lac type with a redshift of z = 0.179. Broadband multiwavelength observations contemporaneous with the VERITAS exposure period can be used to subclassify the blazar as an HBL object, including data from the MDM observatory, Swift-UVOT, and X-Ray Telescope, and continuous monitoring at photon energies above 1 GeV from the FermiLarge Area Telescope (LAT). We find that in the absence of undetected, high-energy rapid variability, the one-zone synchrotron self-Compton (SSC) model overproduces the high-energy gamma-ray emission measured by the Fermi-LAT over 2.3 years. The spectral energy distribution can be parameterized satisfactorily with an external-Compton or lepto-hadronic model, which have two and six additional free parameters, respectively, compared to the one-zone SSC model.
  •  
2.
  • Aliu, E., et al. (author)
  • VERITAS Observations of Six Bright, Hard-spectrum Fermi-LAT Blazars
  • 2012
  • In: Astrophysical Journal. - 0004-637X .- 1538-4357. ; 759:2
  • Journal article (peer-reviewed)abstract
    • We report on VERITAS very high energy (VHE; E ≥ 100 GeV) observations of six blazars selected from the Fermi Large Area Telescope First Source Catalog (1FGL). The gamma-ray emission from 1FGL sources was extrapolated up to the VHE band, taking gamma-ray absorption by the extragalactic background light into account. This allowed the selection of six bright, hard-spectrum blazars that were good candidate TeV emitters. Spectroscopic redshift measurements were attempted with the Keck Telescope for the targets without Sloan Digital Sky Survey spectroscopic data. No VHE emission is detected during the observations of the six sources described here. Corresponding TeV upper limits are presented, along with contemporaneousFermi observations and non-concurrent Swift UVOT and X-Ray Telescope data. The blazar broadband spectral energy distributions (SEDs) are assembled and modeled with a single-zone synchrotron self-Compton model. The SED built for each of the six blazars shows a synchrotron peak bordering between the intermediate- and high-spectrum-peak classifications, with four of the six resulting in particle-dominated emission regions.
  •  
3.
  • Stephens, Lucas, et al. (author)
  • Archaeological assessment reveals Earth’s early transformation through land use
  • 2019
  • In: Science. - : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 365:6456, s. 897-902
  • Journal article (peer-reviewed)abstract
    • Humans began to leave lasting impacts on Earth’s surface starting 10,000 to 8000 years ago. Through a synthetic collaboration with archaeologists around the globe, Stephens et al. compiled a comprehensive picture of the trajectory of human land use worldwide during the Holocene (see the Perspective by Roberts). Hunter-gatherers, farmers, and pastoralists transformed the face of Earth earlier and to a greater extent than has been widely appreciated, a transformation that was essentially global by 3000 years before the present.Science, this issue p. 897; see also p. 865Environmentally transformative human use of land accelerated with the emergence of agriculture, but the extent, trajectory, and implications of these early changes are not well understood. An empirical global assessment of land use from 10,000 years before the present (yr B.P.) to 1850 CE reveals a planet largely transformed by hunter-gatherers, farmers, and pastoralists by 3000 years ago, considerably earlier than the dates in the land-use reconstructions commonly used by Earth scientists. Synthesis of knowledge contributed by more than 250 archaeologists highlighted gaps in archaeological expertise and data quality, which peaked for 2000 yr B.P. and in traditionally studied and wealthier regions. Archaeological reconstruction of global land-use history illuminates the deep roots of Earth’s transformation and challenges the emerging Anthropocene paradigm that large-scale anthropogenic global environmental change is mostly a recent phenomenon.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-3 of 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view