SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karikari Thomas) ;pers:(Chamoun Mira)"

Sökning: WFRF:(Karikari Thomas) > Chamoun Mira

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Karikari, Thomas, et al. (författare)
  • Blood phosphorylated tau 181 as a biomarker for Alzheimer's disease: a diagnostic performance and prediction modelling study using data from four prospective cohorts.
  • 2020
  • Ingår i: The Lancet. Neurology. - 1474-4465 .- 1474-4422. ; 19:5, s. 422-433
  • Tidskriftsartikel (refereegranskat)abstract
    • CSF and PET biomarkers of amyloid β and tau accurately detect Alzheimer's disease pathology, but the invasiveness, high cost, and poor availability of these detection methods restrict their widespread use as clinical diagnostic tools. CSF tau phosphorylated at threonine 181 (p-tau181) is a highly specific biomarker for Alzheimer's disease pathology. We aimed to assess whether blood p-tau181 could be used as a biomarker for Alzheimer's disease and for prediction of cognitive decline and hippocampal atrophy.We developed and validated an ultrasensitive blood immunoassay for p-tau181. Assay performance was evaluated in four clinic-based prospective cohorts. The discovery cohort comprised patients with Alzheimer's disease and age-matched controls. Two validation cohorts (TRIAD and BioFINDER-2) included cognitively unimpaired older adults (mean age 63-69 years), participants with mild cognitive impairment (MCI), Alzheimer's disease, and frontotemporal dementia. In addition, TRIAD included healthy young adults (mean age 23 years) and BioFINDER-2 included patients with other neurodegenerative disorders. The primary care cohort, which recruited participants in Montreal, Canada, comprised control participants from the community without a diagnosis of a neurological condition and patients referred from primary care physicians of the Canadian National Health Service for specialist care. Concentrations of plasma p-tau181 were compared with established CSF and PET biomarkers and longitudinal measurements using Spearman correlation, area under the curve (AUC), and linear regression analyses.We studied 37 individuals in the discovery cohort, 226 in the first validation cohort (TRIAD), 763 in the second validation cohort (BioFINDER-2), and 105 in the primary care cohort (n=1131 individuals). In all cohorts, plasma p-tau181 showed gradual increases along the Alzheimer's disease continuum, from the lowest concentrations in amyloid β-negative young adults and cognitively unimpaired older adults, through higher concentrations in the amyloid β-positive cognitively unimpaired older adults and MCI groups, to the highest concentrations in the amyloid β-positive MCI and Alzheimer's disease groups (p<0·001, Alzheimer's disease vs all other groups). Plasma p-tau181 distinguished Alzheimer's disease dementia from amyloid β-negative young adults (AUC=99·40%) and cognitively unimpaired older adults (AUC=90·21-98·24% across cohorts), as well as other neurodegenerative disorders, including frontotemporal dementia (AUC=82·76-100% across cohorts), vascular dementia (AUC=92·13%), progressive supranuclear palsy or corticobasal syndrome (AUC=88·47%), and Parkinson's disease or multiple systems atrophy (AUC=81·90%). Plasma p-tau181 was associated with PET-measured cerebral tau (AUC=83·08-93·11% across cohorts) and amyloid β (AUC=76·14-88·09% across cohorts) pathologies, and 1-year cognitive decline (p=0·0015) and hippocampal atrophy (p=0·015). In the primary care cohort, plasma p-tau181 discriminated Alzheimer's disease from young adults (AUC=100%) and cognitively unimpaired older adults (AUC=84·44%), but not from MCI (AUC=55·00%).Blood p-tau181 can predict tau and amyloid β pathologies, differentiate Alzheimer's disease from other neurodegenerative disorders, and identify Alzheimer's disease across the clinical continuum. Blood p-tau181 could be used as a simple, accessible, and scalable test for screening and diagnosis of Alzheimer's disease.Alzheimer Drug Discovery Foundation, European Research Council, Swedish Research Council, Swedish Alzheimer Foundation, Swedish Dementia Foundation, Alzheimer Society Research Program.
  •  
2.
  • Pascoal, Tharick A, et al. (författare)
  • Microglial activation and tau propagate jointly across Braak stages.
  • 2021
  • Ingår i: Nature medicine. - : Springer Science and Business Media LLC. - 1546-170X .- 1078-8956. ; 27, s. 1592-1599
  • Tidskriftsartikel (refereegranskat)abstract
    • Compelling experimental evidence suggests that microglial activation is involved in the spread of tau tangles over the neocortex in Alzheimer's disease (AD). We tested the hypothesis that the spatial propagation of microglial activation and tau accumulation colocalize in a Braak-like pattern in the living human brain. We studied 130 individuals across the aging and AD clinical spectrum with positron emission tomography brain imaging for microglial activation ([11C]PBR28), amyloid-β (Aβ) ([18F]AZD4694) and tau ([18F]MK-6240) pathologies. We further assessed microglial triggering receptor expressed on myeloid cells 2 (TREM2) cerebrospinal fluid (CSF) concentrations and brain gene expression patterns. We found that [11C]PBR28 correlated with CSF soluble TREM2 and showed regional distribution resembling TREM2 gene expression. Network analysis revealed that microglial activation and tau correlated hierarchically with each other following Braak-like stages. Regression analysis revealed that the longitudinal tau propagation pathways depended on the baseline microglia network rather than the tau network circuits. The co-occurrence of Aβ, tau and microglia abnormalities was the strongest predictor of cognitive impairment in our study population. Our findings support a model where an interaction between Aβ and activated microglia sets the pace for tau spread across Braak stages.
  •  
3.
  •  
4.
  • Simrén, Joel, 1996, et al. (författare)
  • CSF tau368/total-tau ratio reflects cognitive performance and neocortical tau better compared to p-tau181 and p-tau217 in cognitively impaired individuals.
  • 2022
  • Ingår i: Alzheimer's research & therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Cerebrospinal fluid (CSF) tau biomarkers are reliable diagnostic markers for Alzheimer's disease (AD). However, their strong association with amyloid pathology may limit their reliability as specific markers of tau neurofibrillary tangles. A recent study showed evidence that a ratio of CSF C-terminally truncated tau (tau368, a tangle-enriched tau species), especially in ratio with total tau (t-tau), correlates strongly with tau PET tracer uptake. In this study, we set to evaluate the performance of the tau368/t-tau ratio in capturing tangle pathology, as indexed by a high-affinity tau PET tracer, as well as its association with severity of clinical symptoms.In total, 125 participants were evaluated cross-sectionally from the Translational Biomarkers of Aging and Dementia (TRIAD) cohort (21 young, 60 cognitively unimpaired [CU] elderly [15 Aβ+], 10 Aβ+ with mild cognitive impairment [MCI], 14 AD dementia patients, and 20 Aβ- individuals with non-AD cognitive disorders). All participants underwent amyloid and tau PET scanning, with [18F]-AZD4694 and [18F]-MK6240, respectively, and had CSF measurements of p-tau181, p-tau217, and t-tau. CSF concentrations of tau368 were quantified in all individuals with an in-house single molecule array assay.CSF tau368 concentration was not significantly different across the diagnostic groups, although a modest increase was observed in all groups as compared with healthy young individuals (all P < 0.01). In contrast, the CSF tau368/t-tau ratio was the lowest in AD dementia, being significantly lower than in CU individuals (Aβ-, P < 0.001; Aβ+, P < 0.01), as well as compared to those with non-AD cognitive disorders (P < 0.001). Notably, in individuals with symptomatic AD, tau368/t-tau correlated more strongly with [18F]-MK6240 PET SUVR as compared to the other CSF tau biomarkers, with increasing associations being seen in brain regions associated with more advanced disease (isocortical regions > limbic regions > transentorhinal regions). Importantly, linear regression models indicated that these associations were not confounded by Aβ PET SUVr. CSF tau368/t-tau also tended to continue to become more abnormal with higher tau burden, whereas the other biomarkers plateaued after the limbic stage. Finally, the tau368/t-tau ratio correlated more strongly with cognitive performance in individuals with symptomatic AD as compared to t-tau, p-tau217 and p-tau181.The tau368/t-tau ratio captures novel aspects of AD pathophysiology and disease severity in comparison to established CSF tau biomarkers, as it is more closely related to tau PET SUVR and cognitive performance in the symptomatic phase of the disease.
  •  
5.
  • Tissot, Cécile, et al. (författare)
  • Plasma pTau181 predicts cortical brain atrophy in aging and Alzheimer's disease.
  • 2021
  • Ingår i: Alzheimer's Research & Therapy. - : Springer Science and Business Media LLC. - 1758-9193. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • To investigate the association of plasma pTau181, assessed with a new immunoassay, with neurodegeneration of white matter and gray matter cross-sectionally and longitudinally, in aging and Alzheimer's disease.Observational data was obtained from the Alzheimer's Disease Neuroimaging Initiative, in which participants underwent plasma assessment and magnetic resonance imaging. Based on their clinical diagnosis, participants were classified as cognitively unimpaired and cognitively impaired. Linear regressions and linear mixed-effect models were used to test the cross-sectional and longitudinal associations between baseline plasma pTau181 and neurodegeneration using voxel-based morphometry.We observed a negative correlation at baseline between plasma pTau181 and gray matter volume in cognitively unimpaired individuals. In cognitively impaired individuals, we observed a negative association between plasma pTau181 and both gray and white matter volume. In longitudinal analyses conducted in the cognitively unimpaired group, plasma pTau181 was negatively correlated with gray matter volume, starting 36months after baseline assessments. Finally, in cognitively impaired individuals, plasma pTau181 concentrations were negatively correlated with both gray and white matter volume as early as 12months after baseline, and neurodegeneration increased in an incremental manner until 48months.Higher levels of plasma pTau181 correlate with neurodegeneration and predict further brain atrophy in aging and Alzheimer's disease. Plasma pTau181 may be useful in predicting AD-related neurodegeneration, comparable to positron emission tomography or cerebrospinal fluid assessment with high specificity for AD neurodegeneration.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy