SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karikari Thomas) ;pers:(Rial Alexis Moscoso)"

Sökning: WFRF:(Karikari Thomas) > Rial Alexis Moscoso

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Grothe, Michel J., 1981, et al. (författare)
  • Associations of Fully Automated CSF and Novel Plasma Biomarkers With Alzheimer Disease Neuropathology at Autopsy.
  • 2021
  • Ingår i: Neurology. - 1526-632X. ; 97:12
  • Tidskriftsartikel (refereegranskat)abstract
    • To study cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) analyzed by fully automated Elecsys immunoassays in comparison to neuropathologic gold standards, and compare their accuracy to plasma phosphorylated tau (p-tau181) measured using a novel Simoa method.We studied ante-mortem Elecsys-derived CSF biomarkers in 45 individuals who underwent standardized post-mortem assessments of AD and non-AD neuropathologic changes at autopsy. In a subset of 26 participants, we also analysed ante-mortem levels of plasma p-tau181 and neurofilament light (NfL). Reference biomarker values were obtained from 146 amyloid-PET-negative healthy controls (HC).All CSF biomarkers clearly distinguished pathology-confirmed AD dementia (N=27) from HC (AUCs=0.86-1.00). CSF total-tau (t-tau), p-tau181, and their ratios with Aβ1-42, also accurately distinguished pathology-confirmed AD from non-AD dementia (N=8; AUCs=0.94-0.97). In pathology-specific analyses, intermediate-to-high Thal amyloid phases were best detected by CSF Aβ1-42 (AUC[95% CI]=0.91[0.81-1]), while intermediate-to-high CERAD neuritic plaques and Braak tau stages were best detected by CSF p-tau181 (AUC=0.89[0.79-0.99] and 0.88[0.77-0.99], respectively). Optimal Elecsys biomarker cut-offs were derived at 1097/229/19 pg/ml for Aβ1-42, t-tau, and p-tau181. In the plasma subsample, both plasma p-tau181 (AUC=0.91[0.86-0.96]) and NfL (AUC=0.93[0.87-0.99]) accurately distinguished pathology-confirmed AD (N=14) from HC. However, only p-tau181 distinguished AD from non-AD dementia cases (N=4; AUC=0.96[0.88-1.00]), and showed a similar, though weaker, pathologic specificity for neuritic plaques (AUC=0.75[0.52-0.98]) and Braak stage (AUC=0.71[0.44-0.98]) as CSF p-tau181.Elecsys-derived CSF biomarkers detect AD neuropathologic changes with very high discriminative accuracy in-vivo. Preliminary findings support the use of plasma p-tau181 as an easily accessible and scalable biomarker of AD pathology.This study provides Class II evidence that fully-automated CSF t-tau and p-tau181measurements discriminate between autopsy-confirmed Alzheimer's disease and other dementias.
  •  
2.
  • Karikari, Thomas, et al. (författare)
  • Diagnostic performance and prediction of clinical progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging Initiative.
  • 2021
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 26, s. 429-442
  • Tidskriftsartikel (refereegranskat)abstract
    • Whilst cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers for amyloid-β (Aβ) and tau pathologies are accurate for the diagnosis of Alzheimer's disease (AD), their broad implementation in clinical and trial settings are restricted by high cost and limited accessibility. Plasma phosphorylated-tau181 (p-tau181) is a promising blood-based biomarker that is specific for AD, correlates with cerebral Aβ and tau pathology, and predicts future cognitive decline. In this study, we report the performance of p-tau181 in >1000 individuals from the Alzheimer's Disease Neuroimaging Initiative (ADNI), including cognitively unimpaired (CU), mild cognitive impairment (MCI) and AD dementia patients characterized by Aβ PET. We confirmed that plasma p-tau181 is increased at the preclinical stage of Alzheimer and further increases in MCI and AD dementia. Individuals clinically classified as AD dementia but having negative Aβ PET scans show little increase but plasma p-tau181 is increased if CSF Aβ has already changed prior to Aβ PET changes. Despite being a multicenter study, plasma p-tau181 demonstrated high diagnostic accuracy to identify AD dementia (AUC=85.3%; 95% CI, 81.4-89.2%), as well as to distinguish between Aβ- and Aβ+ individuals along the Alzheimer's continuum (AUC=76.9%; 95% CI, 74.0-79.8%). Higher baseline concentrations of plasma p-tau181 accurately predicted future dementia and performed comparably to the baseline prediction of CSF p-tau181. Longitudinal measurements of plasma p-tau181 revealed low intra-individual variability, which could be of potential benefit in disease-modifying trials seeking a measurable response to a therapeutic target. This study adds significant weight to the growing body of evidence in the use of plasma p-tau181 as a non-invasive diagnostic and prognostic tool for AD, regardless of clinical stage, which would be of great benefit in clinical practice and a large cost-saving in clinical trial recruitment.
  •  
3.
  • Rial, Alexis Moscoso, et al. (författare)
  • CSF biomarkers and plasma p-tau181 as predictors of longitudinal tau accumulation: Implications for clinical trial design
  • 2022
  • Ingår i: Alzheimer's and Dementia. - : Wiley. - 1552-5260 .- 1552-5279. ; 18:12, s. 2614-2626
  • Tidskriftsartikel (refereegranskat)abstract
    • Introduction: Clinical trials targeting tau in Alzheimer's disease (AD) need to recruit individuals at risk of tau accumulation. Here, we studied cerebrospinal fluid (CSF) biomarkers and plasma phosphorylated tau (p-tau)181 as predictors of tau accumulation on positron emission tomography (PET) to evaluate implications for trial designs. Methods: We included older individuals who had serial tau-PET scans, baseline amyloid beta (Aβ)-PET, and baseline CSF biomarkers (n=163) or plasma p-tau181 (n=74). We studied fluid biomarker associations with tau accumulation and estimated trial sample sizes and screening failure reductions by implementing these markers into participant selection for trials. Results: P-tau181 in CSF and plasma predicted tau accumulation (r>0.36, P<.001), even in AD-continuum individuals with normal baseline tau-PET (A+T–; r>0.37, P<.05). Recruitment based on CSF biomarkers yielded comparable sample sizes to Aβ-PET. Prescreening with plasma p-tau181 reduced up to ≈50% of screening failures. Discussion: Clinical trials testing tau-targeting therapies may benefit from using fluid biomarkers to recruit individuals at risk of tau aggregation. © 2022 The Authors. Alzheimer's & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer's Association
  •  
4.
  • Rial, Alexis Moscoso, et al. (författare)
  • Longitudinal Associations of Blood Phosphorylated Tau181 and Neurofilament Light Chain With Neurodegeneration in Alzheimer Disease.
  • 2021
  • Ingår i: JAMA Neurology. - : American Medical Association (AMA). - 2168-6157 .- 2168-6149. ; 78:4, s. 396-406
  • Tidskriftsartikel (refereegranskat)abstract
    • Plasma phosphorylated tau at threonine 181 (p-tau181) has been proposed as an easily accessible biomarker for the detection of Alzheimer disease (AD) pathology, but its ability to monitor disease progression in AD remains unclear.To study the potential of longitudinal plasma p-tau181 measures for assessing neurodegeneration progression and cognitive decline in AD in comparison to plasma neurofilament light chain (NfL), a disease-nonspecific marker of neuronal injury.This longitudinal cohort study included data from the Alzheimer's Disease Neuroimaging Initiative from February 1, 2007, to June 6, 2016. Follow-up blood sampling was performed for up to 8 years. Plasma p-tau181 measurements were performed in 2020. This was a multicentric observational study of 1113 participants, including cognitively unimpaired participants as well as patients with cognitive impairment (mild cognitive impairment and AD dementia). Participants were eligible for inclusion if they had available plasma p-tau181 and NfL measurements and at least 1 fluorine-18-labeled fluorodeoxyglucose (FDG) positron emission tomography (PET) or structural magnetic resonance imaging scan performed at the same study visit. Exclusion criteria included any significant neurologic disorder other than suspected AD; presence of infection, infarction, or multiple lacunes as detected by magnetic resonance imaging; and any significant systemic condition that could lead to difficulty complying with the protocol.Plasma p-tau181 and NfL measured with single-molecule array technology.Longitudinal imaging markers of neurodegeneration (FDG PET and structural magnetic resonance imaging) and cognitive test scores (Preclinical Alzheimer Cognitive Composite and Alzheimer Disease Assessment Scale-Cognitive Subscale with 13 tasks). Data were analyzed from June 20 to August 15, 2020.Of the 1113 participants (mean [SD] age, 74.0 [7.6] years; 600 men [53.9%]; 992 non-Hispanic White participants [89.1%]), a total of 378 individuals (34.0%) were cognitively unimpaired (CU) and 735 participants (66.0%) were cognitively impaired (CImp). Of the CImp group, 537 (73.1%) had mild cognitive impairment, and 198 (26.9%) had AD dementia. Longitudinal changes of plasma p-tau181 were associated with cognitive decline (CU: r=-0.24, P<.001; CImp: r=0.34, P<.001) and a prospective decrease in glucose metabolism (CU: r=-0.05, P=.48; CImp: r=-0.27, P<.001) and gray matter volume (CU: r=-0.19, P<.001; CImp: r=-0.31, P<.001) in highly AD-characteristic brain regions. These associations were restricted to amyloid-β-positive individuals. Both plasma p-tau181 and NfL were independently associated with cognition and neurodegeneration in brain regions typically affected in AD. However, NfL was also associated with neurodegeneration in brain regions exceeding this AD-typical spatial pattern in amyloid-β-negative participants. Mediation analyses found that approximately 25% to 45% of plasma p-tau181 outcomes on cognition measures were mediated by the neuroimaging-derived markers of neurodegeneration, suggesting links between plasma p-tau181 and cognition independent of these measures.Study findings suggest that plasma p-tau181 was an accessible and scalable marker for predicting and monitoring neurodegeneration and cognitive decline and was, unlike plasma NfL, AD specific. The study findings suggest implications for the use of plasma biomarkers as measures to monitor AD progression in clinical practice and treatment trials.
  •  
5.
  • Rial, Alexis Moscoso, et al. (författare)
  • Time course of phosphorylated-tau181 in blood across the Alzheimer's disease spectrum.
  • 2021
  • Ingår i: Brain : a journal of neurology. - : Oxford University Press (OUP). - 1460-2156. ; 144:1, s. 325-339
  • Tidskriftsartikel (refereegranskat)abstract
    • Tau phosphorylated at threonine 181 (p-tau181) measured in blood plasma has recently been proposed as an accessible, scalable, and highly specific biomarker for Alzheimer's disease. Longitudinal studies, however, investigating the temporal dynamics of this novel biomarker are lacking. It is therefore unclear when in the disease process plasma p-tau181 increases above physiological levels and how it relates to the spatiotemporal progression of Alzheimer's disease characteristic pathologies. We aimed to establish the natural time course of plasma p-tau181 across the sporadic Alzheimer's disease spectrum in comparison to those of established imaging and fluid-derived biomarkers of Alzheimer's disease. We examined longitudinal data from a large prospective cohort of elderly individuals enrolled in the Alzheimer's Disease Neuroimaging Initiative (ADNI) (n=1067) covering a wide clinical spectrum from normal cognition to dementia, and with measures of plasma p-tau181 and an 18F-florbetapir amyloid-β PET scan at baseline. A subset of participants (n=864) also had measures of amyloid-β1-42 and p-tau181 levels in CSF, and another subset (n=298) had undergone an 18F-flortaucipir tau PET scan 6 years later. We performed brain-wide analyses to investigate the associations of plasma p-tau181 baseline levels and longitudinal change with progression of regional amyloid-β pathology and tau burden 6 years later, and estimated the time course of changes in plasma p-tau181 and other Alzheimer's disease biomarkers using a previously developed method for the construction of long-term biomarker temporal trajectories using shorter-term longitudinal data. Smoothing splines demonstrated that earliest plasma p-tau181 changes occurred even before amyloid-β markers reached abnormal levels, with greater rates of change correlating with increased amyloid-β pathology. Voxel-wise PET analyses yielded relatively weak, yet significant, associations of plasma p-tau181 with amyloid-β pathology in early accumulating brain regions in cognitively healthy individuals, while the strongest associations with amyloid-β were observed in late accumulating regions in patients with mild cognitive impairment. Cross-sectional and particularly longitudinal measures of plasma p-tau181 were associated with widespread cortical tau aggregation 6 years later, covering temporoparietal regions typical for neurofibrillary tangle distribution in Alzheimer's disease. Finally, we estimated that plasma p-tau181 reaches abnormal levels ∼6.5 and 5.7 years after CSF and PET measures of amyloid-β, respectively, following similar dynamics as CSF p-tau181. Our findings suggest that plasma p-tau181 increases are associated with the presence of widespread cortical amyloid-β pathology and with prospective Alzheimer's disease typical tau aggregation, providing clear implications for the use of this novel blood biomarker as a diagnostic and screening tool for Alzheimer's disease.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy