SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karim Amir) ;lar1:(kth)"

Sökning: WFRF:(Karim Amir) > Kungliga Tekniska Högskolan

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gustafsson, Oscar, et al. (författare)
  • A performance assessment of type-II interband In0.5Ga 0.5Sb QD photodetectors
  • 2013
  • Ingår i: Infrared physics & technology. - : Elsevier BV. - 1350-4495 .- 1879-0275. ; 61, s. 319-324
  • Tidskriftsartikel (refereegranskat)abstract
    • Self-assembled quantum-dot (QD) structures with type-II band alignment to the surrounding matrix material have been proposed as a III/V material approach to realize small-bandgap device structures suitable for photon detection and imaging in the long-wavelength infrared (LWIR) band. Here, we analyze the photoresponse of In0.5Ga0.5Sb/InAs QD photodiodes and estimate the system performance of type-II QD -based photodetectors. A review of alternative design approaches is presented and the choice of matrix material is discussed in terms of band alignment and its effect on the photoresponse. Photodiodes were fabricated consisting of 10 layers of In0.5Ga 0.5Sb QDs grown on InAs (0 0 1) substrates with metal-organic vapor-phase epitaxy (MOVPE). The photoresponse and dark current were measured in single pixel devices as a function of temperature in the range 20-230 K. The quantum efficiency shows an Arrhenius type behavior, which is attributed to hole trapping. This severely limits the detector performance at typical LWIR sensor operating temperatures (60-120 K). A device design with the matrix material InAs0.6Sb0.4 is proposed as a mean to improve the performance by reducing the barrier for hole transport. This can potentially allow type-II InGaSb QDs to be a competitive sensor material for LWIR detection.
  •  
2.
  • Gustafsson, Oscar, et al. (författare)
  • Long-wavelength infrared photoluminescence from InGaSb/InAs quantum dots
  • 2013
  • Ingår i: Infrared physics & technology. - : Elsevier BV. - 1350-4495 .- 1879-0275. ; 59, s. 89-92
  • Tidskriftsartikel (refereegranskat)abstract
    • We study the growth of self-assembled InGaSb/InAs quantum dots (QDs) and investigate how gallium can be used to reduce the optical transition energy in the InSb QD system. InGaSb QDs were grown on InAs (0 0 1) substrates by metal-organic vapor-phase epitaxy (MOVPE) and the material was characterized by photoluminescence (PL) measurements. A PL peak wavelength is demonstrated beyond 8 μm at 77 K, which is significantly longer than what has been reported for InSb QDs. The results suggest that InGaSb QDs can be grown at a larger size than InSb QDs leading to reduced confinement in the QDs.
  •  
3.
  • Gustafsson, Oscar, et al. (författare)
  • Photoluminescence photoresponse from InSb/InAs-based quantum dot structures
  • 2012
  • Ingår i: Optics Express. - : Optical Society of America. - 1094-4087. ; 20:19, s. 21264-71
  • Tidskriftsartikel (refereegranskat)abstract
    • InSb-based quantum dots grown by metal-organic vapor-phase epitaxy (MOVPE) on InAs substrates are studied for use as the active material in interband photon detectors. Long-wavelength infrared (LWIR) photoluminescence is demonstrated with peak emission at 8.5 μm and photoresponse, interpreted to originate from type-II interband transitions in a p-i-n photodiode, was measured up to 6 μm, both at 80 K. The possibilities and benefits of operation in the LWIR range (8-12 μm) are discussed and the results suggest that InSb-based quantum dot structures can be suitable candidates for photon detection in the LWIR regime.
  •  
4.
  • Karim, Amir, et al. (författare)
  • Characterization of InSb QDs grown on InAs (100) substrate by MBE and MOVPE
  • 2012
  • Ingår i: Proc SPIE Int Soc Opt Eng. - : SPIE. - 9780819491312
  • Konferensbidrag (refereegranskat)abstract
    • We report on the optical and structural characterization of InSb QDs in InAs matrix, grown on InAs (100) substrates, for infrared photodetection. InSb has 7% lattice mismatch with InAs forming strained QDs, which are promising for longwave IR applications, due to their type-II band alignment. This report contains material development results of InSb QDs for increasing their emission wavelength towards long-wave IR region. Samples were grown by two techniques of MBE and MOVPE, with different InSb coverage on InAs (100) substrates. Structures grown by MBE reveal QD related photoluminescence at 4 μm. AFM investigations of the MBE grown structures showed uncapped dots of ∼ 35 nm in size and ∼ 3 nm in height, with a density of about 2 × 1010 cm -2. Cross-section TEM investigations of buried InSb layers grown by MBE showed coherently strained QDs for nominal InSb coverage in the range of 1.6 - 2 monolayers (MLs). Layers with InSb coverage more than 2MLs contain relaxed QDs with structural defects due to large amount of strain between InSb and InAs. Samples with such large dots did not show any InSb related luminescence. The MOVPE grown InSb samples exhibit a strong QD related emission between 3.8 to 7.5 μm, depending on the amount of InSb coverage and other growth parameters. We report the longest wavelength observed so far in this material system.
  •  
5.
  • Karim, Amir, et al. (författare)
  • In(Ga)Sb/InAs quantum dot based IR photodetectors with thermally activated photoresponse
  • 2013
  • Ingår i: Proceedings of SPIE. - : SPIE. - 9780819494955
  • Konferensbidrag (refereegranskat)abstract
    • We report on the device characterization of In(Ga)Sb/InAs quantum dots (QDs) based photodetectors for long wave IR detectors. The detection principle of these quantum-dot infrared photodetectors (QDIPs) is based on the spatially indirect transition between the In(Ga)Sb QDs and the InAs matrix, as a result of the type-II band alignment. Such photodetectors are expected to have lower dark currents and higher operating temperatures compared to the current state of the art InSb and mercury cadmium telluride (MCT) technology. The In(Ga)Sb QD structures were grown using metal-organic vapour-phase epitaxy and explored using structural, electrical and optical characterization techniques. Material development resulted in obtaining photoluminescence up to 10 μm, which is the longest wavelength reported in this material system. We have fabricated different photovoltaic IR detectors from the developed material that show absorption up to 8 μm. Photoresponse spectra, showing In(Ga)Sb QD related absorption edge, were obtained up to 200 K. Detectors with different In(Ga)Sb QDs showing different cut-off wavelengths were investigated for photoresponse. Photoresponse in these detectors is thermally activated with different activation energies for devices with different cut-off wavelengths. Devices with longer cut-off wavelength exhibit higher activation energies. We can interpret this using the energy band diagram of the dots/matrix system for different QD sizes.
  •  
6.
  • Karim, Amir, 1976-, et al. (författare)
  • Influence of Er and O concentrations on the microstructure and luminescence of Si:Er/O LEDs
  • 2008
  • Ingår i: Journal of Physics, Conference Series. - : IOP Publishing. - 1742-6588 .- 1742-6596. ; 100:042010
  • Tidskriftsartikel (refereegranskat)abstract
    • Erbium(Er)/Oxygen(O) doped Silicon (Si) layers grown by molecular beam epitaxy (MBE), can be used for fabricating Si-based light emitting diodes. The electroluminescence intensity from these layers depends sensitively on the formation of specific types of Er/O precipitates inside the Si host. We have performed a detailed microstructure analysis of MBE-grown Er/O doped Si layers using electron microscopy and combined it with secondary ion mass spectrometry (SIMS) measurements as well as electroluminescence studies. Two types of microstructures are observed in different samples with specific Er and O concentrations and grown using Er and Si co-evaporation in O ambient. The first type of microstructure consists of planar precipitates along (311) planes mostly initiated at the onset of the growth of the Si:Er/O layer. The second characteristic type of microstructure observed contain round precipitates of Er/O. Using analytical microscopy techniques it was revealed that the round precipitates contain a higher ratio of Er to O as compared to the planar precipitates of the first type. The planar precipitates normally result in structures with high electroluminescence intensity while the structures with round precipitates have low intensity.
  •  
7.
  • Malm, Hedda, et al. (författare)
  • Recent developments in type-II superlattice detectors at IRnova AB
  • 2012
  • Ingår i: INFRARED TECHNOLOGY AND APPLICATIONS XXXVIII, PTS 1 AND 2. - : SPIE-INT SOC OPTICAL ENGINEERING. - 9780819490315
  • Konferensbidrag (refereegranskat)abstract
    • A mid wave infrared type-II superlattice focal plane array with 320x256 pixels, 30 mu m pitch and 90 % fill factor was fabricated in house, using a conventional homojunction p-i-n photodiode design and the ISC9705 readout circuit. High-quality imaging up to 110 K is demonstrated with the substrate fully removed. The absorber is 2 mu m thick, and no antireflection coating was used, so there is still room for significant improvement of the quantum efficiency, which is in the 40 % range. Studies of the dark current vs. temperature behavior indicate that the device is limited by Shockley-Read-Hall generation from the depletion region. The activation energy of this dark current component is 0.13 eV, suggesting an unidentified recombination center positioned halfway into the 0.24 eV bandgap. Furthermore, we report on detectors with 100 % cut-off at 13 mu m. The dark current density at 60 K and -50 mV bias is 2x10(-4) A/cm(2). Quantum efficiency, NETD and BLIP temperature are also calculated. Position-sensitive photocurrent measurements on mesa-etched superlattice material were made at low temperatures using a focused laser spot. The lateral diffusion length for holes was extracted and is reported.
  •  
8.
  • Wang, Qin, et al. (författare)
  • Analysis of surface oxides on narrow bandgap III-V semiconductors leading towards surface leakage free IR photodetectors
  • 2012
  • Ingår i: Proceedings of SPIE, the International Society for Optical Engineering. - : SPIE. - 0277-786X .- 1996-756X. ; 8353, s. 835311-
  • Tidskriftsartikel (refereegranskat)abstract
    • Narrow bandgap semiconductors GaSb, InAs, and InSb are important building blocks for infrared photodetectors based on type-II InSb quantum dots or an InAs/GaSb strained layer superlattice. Understanding the surface chemical composition of these materials can provide valuable information that enables optimization of device surface passivation techniques leading towards surface leakage free IR photodetectors. We report on an investigation into Ga-, In-, Sb-, and As-oxides and other chemical species on the surface of untreated, dry etched and thermally treated GaSb, InAs and InSb samples by x-ray photoelectron spectroscopy. The experimental results reveal the presence of Sb- and Ga-oxides on the surfaces of the untreated and treated GaSb samples. Both Sb- and In-oxides were observed on the surface of all InSb samples, and especially the dry etched sample had thicker oxide layers. In the case of the InAs samples, not only In-and As-oxides XPS signals were obtained, but also AsCl species were found on the ICP dry etched sample. These results helped to analyze the dark current of our fabricated IR detectors.
  •  
9.
  • Wang, Qin, et al. (författare)
  • Surface states characterization and simulation of type-II In(Ga)Sb quantum dot structures for processing optimization of LWIR detectors
  • 2013
  • Ingår i: Proceedings of SPIE - The International Society for Optical Engineering. - : SPIE. - 9780819494955
  • Konferensbidrag (refereegranskat)abstract
    • Quantum structures base on type-II In(Ga)Sb quantum dots (QDs) embedded in an InAs matrix were used as active material for achieving long-wavelength infrared (LWIR) photodetectors in this work. Both InAs and In(Ga)Sb are narrow band semiconductor materials and known to possess a large number of surface states, which apparently play significant impact for the detector's electrical and optical performance. These surface states are caused not only by material or device processing induced defects but also by surface dangling bonds, oxides, roughness and contaminants. To experimentally analyze the surface states of the QD structures treated by different device fabrication steps, atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) measurements were performed. The results were used to optimize the fabrication process of the LWIR photodetectors in our ongoing project. The dark current and its temperature dependence of the fabricated IR photodetectors were characterized in temperature range 10 K to 300 K, and the experiment results were analyzed by a theoretic modeling obtained using simulation tool MEDICI.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy