SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Karlsson A) ;lar1:(slu)"

Sökning: WFRF:(Karlsson A) > Sveriges Lantbruksuniversitet

  • Resultat 1-10 av 32
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schroeder, J., et al. (författare)
  • Fewer invited talks by women in evolutionary biology symposia
  • 2013
  • Ingår i: Journal of evolutionary biology. - : Wiley. - 1420-9101 .- 1010-061X. ; 26:9, s. 2063-2069
  • Tidskriftsartikel (refereegranskat)abstract
    • Lower visibility of female scientists, compared to male scientists, is a potential reason for the under-representation of women among senior academic ranks. Visibility in the scientific community stems partly from presenting research as an invited speaker at organized meetings. We analysed the sex ratio of presenters at the European Society for Evolutionary Biology (ESEB) Congress 2011, where all abstract submissions were accepted for presentation. Women were under-represented among invited speakers at symposia (15% women) compared to all presenters (46%), regular oral presenters (41%) and plenary speakers (25%). At the ESEB congresses in 2001-2011, 9-23% of invited speakers were women. This under-representation of women is partly attributable to a larger proportion of women, than men, declining invitations: in 2011, 50% of women declined an invitation to speak compared to 26% of men. We expect invited speakers to be scientists from top ranked institutions or authors of recent papers in high-impact journals. Considering all invited speakers (including declined invitations), 23% were women. This was lower than the baseline sex ratios of early-mid career stage scientists, but was similar to senior scientists and authors that have published in high-impact journals. High-quality science by women therefore has low exposure at international meetings, which will constrain Evolutionary Biology from reaching its full potential. We wish to highlight the wider implications of turning down invitations to speak, and encourage conference organizers to implement steps to increase acceptance rates of invited talks.
  •  
2.
  • Corman, Jessica R., et al. (författare)
  • Response of lake metabolism to catchment inputs inferred using high-frequency lake and stream data from across the northern hemisphere
  • 2023
  • Ingår i: Limnology and Oceanography. - : John Wiley & Sons. - 0024-3590 .- 1939-5590. ; 68:12, s. 2617-2631
  • Tidskriftsartikel (refereegranskat)abstract
    • In lakes, the rates of gross primary production (GPP), ecosystem respiration (R), and net ecosystem production (NEP) are often controlled by resource availability. Herein, we explore how catchment vs. within lake predictors of metabolism compare using data from 16 lakes spanning 39°N to 64°N, a range of inflowing streams, and trophic status. For each lake, we combined stream loads of dissolved organic carbon (DOC), total nitrogen (TN), and total phosphorus (TP) with lake DOC, TN, and TP concentrations and high frequency in situ monitoring of dissolved oxygen. We found that stream load stoichiometry indicated lake stoichiometry for C : N and C : P (r2 = 0.74 and r2 = 0.84, respectively), but not for N : P (r2 = 0.04). As we found a strong positive correlation between TN and TP, we only used TP in our statistical models. For the catchment model, GPP and R were best predicted by DOC load, TP load, and load N : P (R2 = 0.85 and R2 = 0.82, respectively). For the lake model, GPP and R were best predicted by TP concentrations (R2 = 0.86 and R2 = 0.67, respectively). The inclusion of N : P in the catchment model, but not the lake model, suggests that both N and P regulate metabolism and that organisms may be responding more strongly to catchment inputs than lake resources. Our models predicted NEP poorly, though it is unclear why. Overall, our work stresses the importance of characterizing lake catchment loads to predict metabolic rates, a result that may be particularly important in catchments experiencing changing hydrologic regimes related to global environmental change.
  •  
3.
  • Abbott, Benjamin W., et al. (författare)
  • Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire : an expert assessment
  • 2016
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 11:3
  • Tidskriftsartikel (refereegranskat)abstract
    • As the permafrost region warms, its large organic carbon pool will be increasingly vulnerable to decomposition, combustion, and hydrologic export. Models predict that some portion of this release will be offset by increased production of Arctic and boreal biomass; however, the lack of robust estimates of net carbon balance increases the risk of further overshooting international emissions targets. Precise empirical or model-based assessments of the critical factors driving carbon balance are unlikely in the near future, so to address this gap, we present estimates from 98 permafrost-region experts of the response of biomass, wildfire, and hydrologic carbon flux to climate change. Results suggest that contrary to model projections, total permafrost-region biomass could decrease due to water stress and disturbance, factors that are not adequately incorporated in current models. Assessments indicate that end-of-the-century organic carbon release from Arctic rivers and collapsing coastlines could increase by 75% while carbon loss via burning could increase four-fold. Experts identified water balance, shifts in vegetation community, and permafrost degradation as the key sources of uncertainty in predicting future system response. In combination with previous findings, results suggest the permafrost region will become a carbon source to the atmosphere by 2100 regardless of warming scenario but that 65%-85% of permafrost carbon release can still be avoided if human emissions are actively reduced.
  •  
4.
  • Denfeld, Blaize A., et al. (författare)
  • Carbon Dioxide and Methane Dynamics in a Small Boreal Lake During Winter and Spring Melt Events
  • 2018
  • Ingår i: Journal of Geophysical Research - Biogeosciences. - 2169-8953 .- 2169-8961. ; 123:8, s. 2527-2540
  • Tidskriftsartikel (refereegranskat)abstract
    • In seasonally ice‐covered lakes, carbon dioxide (CO2) and methane (CH4) emission at ice‐off can account for a significant fraction of the annual budget. Yet knowledge of the mechanisms controlling below lake‐ice carbon (C) dynamics and subsequent CO2 and CH4 emissions at ice‐off is limited. To understand the control of below ice C dynamics, and C emissions in spring, we measured spatial variation in CO2, CH4, and dissolved inorganic and organic carbon from ice‐on to ice‐off, in a small boreal lake during a winter with sporadic melting events. Winter melt events were associated with decreased surface water DOC in the forest‐dominated basin and increased surface water CH4 in the mire‐dominated basin. At the whole‐lake scale, CH4 accumulated below ice throughout the winter, whereas CO2 accumulation was greatest in early winter. Mass‐balance estimates suggest that, in addition to the CO2 and CH4 accumulated during winter, external inputs of CO2 and CH4 and internal processing during ice‐melt could represent significant sources of C gas emissions during ice‐off. Moreover, internal processing of CO2 and CH4 worked in opposition, with production of CO2 and oxidation of CH4 dominating at ice‐off. These findings have important implications for how small boreal lakes will respond to warmer winters in the future; increased winter melt events will likely increase external inputs below ice and thus alter the extent and timing of CO2 and CH4 emissions to the atmosphere at ice‐off.
  •  
5.
  • Denfeld, Blaize A., et al. (författare)
  • Heterogeneous CO2 and CH4 patterns across space and time in a small boreal lake
  • 2020
  • Ingår i: Inland Waters. - : Taylor & Francis. - 2044-2041 .- 2044-205X. ; 10:3, s. 348-359
  • Tidskriftsartikel (refereegranskat)abstract
    • Small boreal lakes emit large amounts of carbon dioxide (CO2) and methane (CH4) to the atmosphere. Yet emissions of these greenhouse gases are variable in space and time, in part due to variable within-lake CO2 and CH4 concentrations. To determine the extent and the underlying drivers of this variation, we measured lake water CO2 and CH4 concentrations and estimated associated emissions using spatially discrete water samples collected every 2 weeks from a small boreal lake. On select dates, we also collected groundwater samples from the surrounding catchment. On average, groundwater draining a connected peat mire complex had significantly higher CO2 and CH4 concentrations compared to waters draining forest on mineral soils. However, within the lake, only CH4 concentrations nearshore from the mire complex were significantly elevated. We observed little spatial variability in surface water CO2; however, bottom water CO2 in the pelagic zone was significantly higher than bottom waters at nearshore locations. Overall, temperature, precipitation, and thermal stratification explained temporal patterns of CO2 concentration, whereas hydrology (discharge and precipitation) best predicted the variation in CH4 concentration. Consistent with these different controls, the highest CO2 emission was related to lake turnover at the end of August while the highest CH4 emission was associated with precipitation events at the end of June. These results suggest that annual carbon emissions from small boreal lakes are influenced by temporal variation in weather conditions that regulate thermal stratification and trigger hydrologic land-water connections that supply gases from catchment soils to the lake.
  •  
6.
  • Forsberg, Elin, et al. (författare)
  • Treatment with Anti-HER2 Chimeric Antigen Receptor Tumor-Infiltrating Lymphocytes (CAR-TILs) Is Safe and Associated with Antitumor Efficacy in Mice and Companion Dogs
  • 2023
  • Ingår i: Cancers. - : MDPI AG. - 2072-6694. ; 15:3
  • Tidskriftsartikel (refereegranskat)abstract
    • Simple Summary CAR-T cells are immune cells equipped with a claw that enable them to bind cancer cells. Usually, CAR-T cells are made using immune cells from blood. Here, we tested the hypothesis that also immune cells that reside in the tumor, so called tumor-infiltrating lymphocytes, can also be modified to carry the claw. This may mean that these cells, called CAR-TILs, will be able to attack cancer cells in two ways, using the claw or binding using its normal protein on the cell surface, the so-called T cell receptor. We show that CAR-TILs can be generated, and that they can kill melanoma cells in cell culture and in mice. Finally, to prepare for clinical trials, we also assess if CAR-TILs can be safe in a human cancer patient-like model, a companion dog suffering from cancer. Our data suggest that CAR-TILs may be a way to treat patients with melanoma but human clinical trials are needed. Patients with metastatic melanoma have a historically poor prognosis, but recent advances in treatment options, including targeted therapy and immunotherapy, have drastically improved the outcomes for some of these patients. However, not all patients respond to available treatments, and around 50% of patients with metastatic cutaneous melanoma and almost all patients with metastases of uveal melanoma die of their disease. Thus, there is a need for novel treatment strategies for patients with melanoma that do not benefit from the available therapies. Chimeric antigen receptor-expressing T (CAR-T) cells are largely unexplored in melanoma. Traditionally, CAR-T cells have been produced by transducing blood-derived T cells with a virus expressing CAR. However, tumor-infiltrating lymphocytes (TILs) can also be engineered to express CAR, and such CAR-TILs could be dual-targeting. To this end, tumor samples and autologous TILs from metastasized human uveal and cutaneous melanoma were expanded in vitro and transduced with a lentiviral vector encoding an anti-HER2 CAR construct. When infused into patient-derived xenograft (PDX) mouse models carrying autologous tumors, CAR-TILs were able to eradicate melanoma, even in the absence of antigen presentation by HLA. To advance this concept to the clinic and assess its safety in an immune-competent and human-patient-like setting, we treated four companion dogs with autologous anti-HER2 CAR-TILs. We found that these cells were tolerable and showed signs of anti-tumor activity. Taken together, CAR-TIL therapy is a promising avenue for broadening the tumor-targeting capacity of TILs in patients with checkpoint immunotherapy-resistant melanoma.
  •  
7.
  • Gardumi, Francesco, et al. (författare)
  • Carrying out a multi-model integrated assessment of European energy transition pathways : Challenges and benefits
  • 2022
  • Ingår i: Energy. - : Elsevier BV. - 0360-5442 .- 1873-6785. ; 258, s. 124329-124329
  • Tidskriftsartikel (refereegranskat)abstract
    • With the publication of the European Green Deal, the European Union has committed to reaching carbon neutrality by 2050. The envisaged reductions of direct greenhouse gases emissions are seen as technically feasible, but if a wrong path is pursued, significant unintended impacts across borders, sectors, societies and ecosystems may follow. Without the insights gained from an impact assessment framework reaching beyond the techno-economic perspective, the pursuit of direct emission reductions may lead to counterproductive outcomes in the long run. We discuss the opportunities and challenges related to the creation and use of an integrated assessment framework built to inform the European Commission on the path to decarbonisation. The framework is peculiar in that it goes beyond existing ones in its scope, depth and cross-scale coverage, by use of numerous specialised models and case studies. We find challenges of consistency that can be overcome by linking modelling tools iteratively in some cases, harmonising modelling assumptions in others, comparing model outputs in others. We find the highest added value of the framework in additional insights it provides on the technical feasibility of decarbonisation pathways, on vulnerability aspects and on unintended environmental and health impacts on national and sub-national scale.
  •  
8.
  • Lupon, Anna, et al. (författare)
  • Groundwater inflows control patterns and sources of greenhouse gas emissions from streams
  • 2019
  • Ingår i: Limnology and Oceanography. - : Wiley. - 0024-3590 .- 1939-5590. ; 64:4, s. 1545-1557
  • Tidskriftsartikel (refereegranskat)abstract
    • Headwater streams can be important sources of carbon dioxide (CO2) and methane (CH4) to the atmosphere. However, the influence of groundwater-stream connectivity on the patterns and sources of carbon (C) gas evasion is still poorly understood. We explored these connections in the boreal landscape through a detailed study of a 1.4 km lake outlet stream that is hydrologically fed by multiple topographically driven groundwater input zones. We measured stream and groundwater dissolved organic C (DOC), CO2, and CH4 concentrations every 50 m biweekly during the ice-free period and estimated in-stream C gas production through a mass balance model and independent estimates of aquatic metabolism. The spatial pattern of C gas concentrations was consistent over time, with peaks of both CH4 and CO2 concentrations occurring after each groundwater input zone. Moreover, lateral C gas inputs from riparian soils were the major source of CO2 and CH4 to the stream. DOC mineralization and CH4 oxidation within the stream accounted for 17-51% of stream CO2 emissions, and this contribution was the greatest during relatively higher flows. Overall, our results illustrate how the nature and arrangement of groundwater flowpaths can organize patterns of stream C concentrations, transformations, and emissions by acting as a direct source of gases and by supplying organic substrates that fuel aquatic metabolism. Hence, refined assessments of how catchment structure influences the timing and magnitude of groundwater-stream connections are crucial for mechanistically understanding and scaling C evasion rates from headwaters.
  •  
9.
  • Ala-aho, P., et al. (författare)
  • Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands
  • 2018
  • Ingår i: Environmental Research Letters. - : IOP Publishing. - 1748-9326. ; 13:3, s. =20-=20
  • Tidskriftsartikel (refereegranskat)abstract
    • The Western Siberian Lowlands (WSL) store large quantities of organic carbon that will be exposed and mobilized by the thawing of permafrost. The fate of mobilized carbon, however, is not well understood, partly because of inadequate knowledge of hydrological controls in the region which has a vast low-relief surface area, extensive lake and wetland coverage and gradually increasing permafrost influence. We used stable water isotopes to improve our understanding of dominant landscape controls on the hydrology of the WSL. We sampled rivers along a 1700 km South-North transect from permafrost-free to continuous permafrost repeatedly over three years, and derived isotope proxies for catchment hydrological responsiveness and connectivity. We found correlations between the isotope proxies and catchment characteristics, suggesting that lakes and wetlands are intimately connected to rivers, and that permafrost increases the responsiveness of the catchment to rainfall and snowmelt events, reducing catchment mean transit times. Our work provides rare isotope-based field evidence that permafrost and lakes/wetlands influence hydrological pathways across a wide range of spatial scales (10-105 km2) and permafrost coverage (0%-70%). This has important implications, because both permafrost extent and lake/wetland coverage are affected by permafrost thaw in the changing climate. Changes in these hydrological landscape controls are likely to alter carbon export and emission via inland waters, which may be of global significance.
  •  
10.
  • Bergström, Ann-Kristin, 1968-, et al. (författare)
  • Effects of nitrogen enrichment on zooplankton biomass and N:P recycling ratios across a DOC gradient in northern-latitude lakes
  • 2021
  • Ingår i: Hydrobiologia. - : Springer. - 0018-8158 .- 1573-5117. ; 848:21, s. 4991-5010
  • Tidskriftsartikel (refereegranskat)abstract
    • We used data from whole-lake studies to assess how changes in food quantity (phytoplankton biomass) and quality (phytoplankton community composition, seston C:P and N:P) with N fertilization affect zooplankton biomass, community composition and C:N:P stoichiometry, and their N:P recycling ratio along a gradient in lake DOC concentrations. We found that despite major differences in phytoplankton biomass with DOC (unimodal distributions, especially with N fertilization), no major differences in zooplankton biomass were detectable. Instead, phytoplankton to zooplankton biomass ratios were high, especially at intermediate DOC and after N fertilization, implying low trophic transfer efficiencies. An explanation for the observed low phytoplankton resource use, and biomass responses in zooplankton, was dominance of colony forming chlorophytes of reduced edibility at intermediate lake DOC, combined with reduced phytoplankton mineral quality (enhanced seston N:P) with N fertilization. N fertilization, however, increased zooplankton N:P recycling ratios, with largest impact at low DOC where phytoplankton benefitted from light sufficiently to cause enhanced seston N:P. Our results suggest that although N enrichment and increased phytoplankton biomass do not necessarily increase zooplankton biomass, bottom-up effects may still impact zooplankton and their N:P recycling ratio through promotion of phytoplankton species of low edibility and altered mineral quality.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 32
Typ av publikation
tidskriftsartikel (29)
forskningsöversikt (2)
bok (1)
Typ av innehåll
refereegranskat (31)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Eriksson, D. (1)
De Eyto, Elvira (1)
Skarpe, C. (1)
Abadie, J. (1)
Söderkvist, Peter (1)
Abbott, Benjamin W. (1)
visa fler...
Jones, Jeremy B. (1)
Schuur, Edward A. G. (1)
Chapin, F. Stuart, I ... (1)
Bowden, William B. (1)
Bret-Harte, M. Syndo ... (1)
Epstein, Howard E. (1)
Flannigan, Michael D ... (1)
Harms, Tamara K. (1)
Hollingsworth, Teres ... (1)
Mack, Michelle C. (1)
McGuire, A. David (1)
Natali, Susan M. (1)
Rocha, Adrian V. (1)
Tank, Suzanne E. (1)
Turetsky, Merritt R. (1)
Vonk, Jorien E. (1)
Wickland, Kimberly P ... (1)
Aiken, George R. (1)
Alexander, Heather D ... (1)
Amon, Rainer M. W. (1)
Benscoter, Brian W. (1)
Bergeron, Yves (1)
Bishop, Kevin (1)
Blarquez, Olivier (1)
Bond-Lamberty, Ben (1)
Breen, Amy L. (1)
Buffam, Ishi (1)
Cai, Yihua (1)
Carcaillet, Christop ... (1)
Carey, Sean K. (1)
Chen, Jing M. (1)
Chen, Han Y. H. (1)
Christensen, Torben ... (1)
Cooper, Lee W. (1)
Cornelissen, J. Hans ... (1)
de Groot, William J. (1)
DeLuca, Thomas H. (1)
Dorrepaal, Ellen (1)
Fetcher, Ned (1)
Finlay, Jacques C. (1)
Forbes, Bruce C. (1)
French, Nancy H. F. (1)
Gauthier, Sylvie (1)
Girardin, Martin P. (1)
visa färre...
Lärosäte
Umeå universitet (19)
Uppsala universitet (9)
Göteborgs universitet (5)
Karolinska Institutet (3)
visa fler...
Högskolan Kristianstad (1)
Kungliga Tekniska Högskolan (1)
Stockholms universitet (1)
Örebro universitet (1)
Linköpings universitet (1)
Naturvårdsverket (1)
visa färre...
Språk
Engelska (31)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (24)
Lantbruksvetenskap (11)
Medicin och hälsovetenskap (7)
Samhällsvetenskap (2)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy