SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kettunen P) ;pers:(Kettunen P)"

Sökning: WFRF:(Kettunen P) > Kettunen P

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  • Krieger, P., et al. (författare)
  • Interaction between metabotropic and ionotropic glutamate receptors regulates neuronal network activity
  • 2000
  • Ingår i: Journal of Neuroscience. - 0270-6474 .- 1529-2401. ; 20:14, s. 5382-5391
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental and computational techniques have been used to investigate the group I metabotropic glutamate receptor (mGluR)-mediated increase in the frequency of spinal cord network activity underlying locomotion in the lamprey. Group I mGluR activation potentiated the amplitude of NMDA-induced currents in identified motoneurons and crossed caudally projecting network interneurons. Group I mGluRs also potentiated NMDA-induced calcium responses. This effect was blocked by a group I mGluR-specific antagonist, but not by blockers of protein kinase A, C, or G. The effect of group I mGluRs activation was also tested on NMDA-induced oscillations known to occur during fictive locomotion. Activation of these receptors increased the duration of the plateau phase and decreased the duration of the hyperpolarizing phase. These effects were blocked by a group I mGluR antagonist. To determine its role in the modulation of NMDA-induced oscillations and the locomotor burst frequency, the potentiation of NMDA receptors by mGluRs was simulated using computational techniques. Simulating the interaction between these receptors reproduced the modulation of the plateau and hyperpolarized phases of NMDA-induced oscillations, and the increase in the frequency of the locomotor rhythm. Our results thus show a postsynaptic interaction between group I mGluRs and NMDA receptors in lamprey spinal cord neurons, which can account for the regulation of the locomotor network output by mGluRs.
  •  
5.
  • Jantti, H, et al. (författare)
  • Human PSEN1 Mutant Glia Improve Spatial Learning and Memory in Aged Mice
  • 2022
  • Ingår i: Cells. - : MDPI AG. - 2073-4409. ; 11:24
  • Tidskriftsartikel (refereegranskat)abstract
    • The PSEN1 ΔE9 mutation causes a familial form of Alzheimer’s disease (AD) by shifting the processing of amyloid precursor protein (APP) towards the generation of highly amyloidogenic Aβ42 peptide. We have previously shown that the PSEN1 ΔE9 mutation in human-induced pluripotent stem cell (iPSC)-derived astrocytes increases Aβ42 production and impairs cellular responses. Here, we injected PSEN1 ΔE9 mutant astrosphere-derived glial progenitors into newborn mice and investigated mouse behavior at the ages of 8, 12, and 16 months. While we did not find significant behavioral changes in younger mice, spatial learning and memory were paradoxically improved in 16-month-old PSEN1 ΔE9 glia-transplanted male mice as compared to age-matched isogenic control-transplanted animals. Memory improvement was associated with lower levels of soluble, but not insoluble, human Aβ42 in the mouse brain. We also found a decreased engraftment of PSEN1 ΔE9 mutant cells in the cingulate cortex and significant transcriptional changes in both human and mouse genes in the hippocampus, including the extracellular matrix-related genes. Overall, the presence of PSEN1 ΔE9 mutant glia exerted a more beneficial effect on aged mouse brain than the isogenic control human cells likely as a combination of several factors.
  •  
6.
  •  
7.
  • Kettunen, P, et al. (författare)
  • mGluR1, but not mGluR5, mediates depolarization of spinal cord neurons by blocking a leak current
  • 2003
  • Ingår i: Journal of neurophysiology. - : American Physiological Society. - 0022-3077 .- 1522-1598. ; 90:4, s. 2341-2348
  • Tidskriftsartikel (refereegranskat)abstract
    • The modulation of neuronal excitability by group I metabotropic glutamate receptors (mGluRs) was studied in isolated lamprey spinal cord. At resting potential, application of the group I mGluR agonist ( R,S)-3,5-dihydroxyphenylglycine (DHPG) slightly depolarized the cells. However, at depolarized membrane potentials, this agonist induced repetitive firing. When Na+channels were blocked by TTX, DHPG induced a slight depolarization at rest that increased in amplitude as the neurons were held at more depolarized membrane potentials. In voltage-clamp conditions, DHPG application induced an inward current associated with a decrease in membrane conductance when cells were held at –40 mV. At resting membrane potential, no significant change in the current was induced by DHPG, although a decrease in membrane conductance was seen. The conductance blocked by DHPG corresponded to a leak current, since DHPG had no effect on the voltagegated current elicited by a voltage step from –60 to –40 mV, when leak currents were subtracted. The leak current blocked by DHPG is mediated by fluxes of both K+and Na+. The subtype of group I mGluR mediating the block of the leak current was characterized using specific antagonists for mGluR1 and mGluR5. The inhibition of the leak current was blocked by the mGluR1 antagonist LY 367385 but not by the mGluR5 antagonist 2-methyl-6-(phenylethynyl)pyridine (MPEP). The DHPG-induced blockage of the leak current required phospholipase C (PLC)-activation and release of Ca2+from internal stores as the effect of DHPG was suppressed by the PLC-blocker U-73122 and after depletion of intracellular Ca2+pools by thapsigargin. Our results thus show that mGluR1 activation depolarizes spinal neurons by inhibiting a leak current. This will boost membrane depolarization and result in an increase in the excitability of spinal cord neurons, which could contribute to the modulation of the activity of the spinal locomotor network.
  •  
8.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy